فی بوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی بوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلودمقاله راه اندازی و احداث یک کارگاه ماشین سازی

اختصاصی از فی بوو دانلودمقاله راه اندازی و احداث یک کارگاه ماشین سازی دانلود با لینک مستقیم و پر سرعت .

 

مقدمه:
امروزه در جوامع مختلف بحث صنعت بعنوان یکی از مهمترین ارکان آن جامعه به شمار می‌آید. کشورهایی که توانسته اند از لحاظ صنعتی پیشرفت کنند معمولا دارای یک درآمد ملی بالا هستند که باعث رفاه مردم آن جامعه شده و درصد بیکاری را نیز کاهش داده است. به همین دلیل در اکثر جوامع به صنعت بهاء زیادی داده می شود و سرمایه گذاریهای علمی و مالی فراوانی نیز در این زمینه انجام می دهند و سعی می‌کنند به نوعی کشورهای دیگر را به خود وابسته کنند. در حالی که جوابگوی نیازهای داخلی نیز بخوبی هستند. در این کشورها مقدار قابل توجهی از بودجه سالانه کشور صرف جذب نیروهای متفکر و با تجربه می‌گردد که عده ای از آنان از کشورهای دیگر و معمولا کشورهای جهان سوم می باشند. چون در این کشورها کمتر به صنعت و افرادی که ایده صنعتی دارند توجه می شود و سرمایه‌گذاری اندکی روی این اشخاص صورت می گیرد.
یکی از این کشورها ماسفانه کشور خود ما، ایران می باشد که دارای مغزهای متفکر فراوانی بوده، اما به دلیل اهمیت ندادن مسئولان و تعلق نگرفتن بودجه مناسب جهت تحقیقات اکثرا به سمت کشورهای دیگر کشیده می شوند. و معمولا تبدیل به یک نیروی اشتغال زا و پردرآمد برای آن کشورها می شوند. و هیچ کس توجه خاصی به این امر نمی کند. در یک چنین شرایطی و با وجود مشکلات فراوان خوشبختانه عده‌ای هستند که با تلاش و پشتکار خودشان و بدون هیچ پشتوانه قوی مالی از طرف دولت اقدام به تاسیس کارگاه های کوچک می کنند که درصد اندکی از آنان پس از یک مدت طولانی تبدیل به یک کارخانه تولیدی می شوند. که باعث اشتغال زایی و ایجاد درآمد می گردند.
البته لازم به ذکر است که در این مرحله معمولا از طرف دولت یا سرمایه گذاران داخلی مورد حمایت قرار گرفته و به مدارج بالایی می رسند.
حال می خواهیم به بررسی و تحلیل این شغل و مصائب و مشکلات آن و نحوه برخورد با آنها بطور اجمالی بپردازیم.

 


2-تعریف: کارگاه ماشین سازی چگونه مکانی است و ماشین ساز واقعی کیست؟
یک کارگاه ماشین سازی به محیطی گفته می شود که در آن فرد یا گروهی شروع به طراحی و ساخت یک دستگاه خاص (معمولا مکانیکی) می کنند که در سطح عمومی یکی از احتیاجات کشور و در سطحی کوچکتر نیاز کارخانجات دیگر را رفع می کنند. و باعث اشتغال زایی وکسب درآمد می گردند. این شغل یکی از سخت ترین و پیچیده ترین کارهای صنعتی می‌باشد و معمولا درصد بسیار کمی از فارغ التحصیلان رشته های تحصیلی صنعتی اقدام به احداث یک کارگاه ماشین سازی می کنند. زیرا برای این شغل علاوه بر تحصیلات نیاز به تجربیات فنی نیز می باشد. به همین دلیل کسانی که چنین هدفی دارند، اگر تحصیلات و تجربیات فنی را به موازات هم بدست آورند. بسیار موفق تر عمل خواهند کرد.
متاسفانه در کشور ما اکثر ماشین سازها در واقع کپی ساز هستند. بدین صورت که یک ماشین صنعتی را که قبلا اختراع و ثبت شده را با کپی برداری و نقشه کردن مجدد شروع به ساختن می کنند که دارای کیفیت بسیار پائین تری می باشد و تنها حسن آن قیمت پائین آن می باشد، عمدتا خریداران این دستگاه ها کارخانجات کم درآمد هستند. که تعداد آنها قابل توجه می‌باشد.
لازم به ذکر است که کار کپی سازی در برخی از کشورهای دیگر نیز انجام می گیرد، اما در سطحی بالا و کیفیت بهتر، که چنین دستگاه هایی در کشورهای جهان سوم وقتی کشورهای صنعتی دیگر بازار فراوانی دارند و برای کشور تولید کننده بسیار درآمدزا است و باعث اشتغال افراد زیادی می شود، اما در هر صورت باید توجه داشت که نفس عمل صحیح نمی باشد.
حال با توجه به شرایط ذکر شده مشخص می شود که در این راه به کسی کارآفرین گفته می‌شود و در واقع ماشین ساز واقعی کسی است که دارای یک دید باز و دارای تحصیلات خوب و تجربیات فنی بالایی باشد تا بتواند اقدام به اشتغال زایی و کسب درآمد فردی و اجتماعی کند.

 


3-برای احداث یک کارگاه ماشین سازی چه باید کرد و به چه امکاناتی نیاز داریم.
1-محل راه اندازی کارگاه:
برای راه اندازی هر کسب و کاری ابتدا باید در نظر داشته باشیم که چطور مکانی را برای انجام آن کار انتخاب کرد و معمولا بنا به نوع شغل مکان های مختلفی نیز وجود دارند. که در راحتی و رونق آن کار تاثیر فراوانی دارند. از آنجایی که کار ماشین سازی یک حرفه خاص و صنعتی به شمار می آید. بنابراین بهترین مکان برای این کار، یک شهرک صنعتی می باشد که این شهرک ها معمولا در حومه شهرهای بزرگ وجود دارند، اما باید توجه داشت که اسکان در چنین مکان هایی بستگی به میزان توانایی ما چه در خرید و چه در اجاره کردن دارد. اگر ما بتوانیم در یک شهرک صنعتی مشغول به کار شویم از بهترین مزایای آن این است که ما می‌توانیم با سایر صنعتگران در ارتباط بوده و از نظرات آنها که در بعضی اوقات بسیار کارآمد نیز می باشد استفاده کنیم. یکی دیگر از شرایطی که باید در نظر بگیریم نزدیک بودن به بازار آهن و ابزار آلات می باشد. تا در هنگام خرید مجبور نباشیم وقت و هزینه زیادی را صرف رفت و آمد کنیم و یا از تک فروشان و خرده فروشان که دارای قیمت هایی بالایی هستند خرید کنیم. اما باید توجه داشت که در یک شرایط خاص و بسیار بد مالی برای شروع می‌توان از مکان های دیگری که در مناطق دورتری می باشند و حتی یک اتاق کوچک نیز شروع استفاده کرد.

 

2-مشخصات ساختمانی کارگاه:
برای انجام کارهای صنعتی معمولا از یک سوله و یا ساختمانی که دارای دیوارهای بلندی (5 الی 6 متر) باشد استفاده می شود، که بسته به نوع کار دارای استانداردهای تعریف شده‌ای می‌باشد که برای این شغل بصورت زیر می باشد.
2-1-یک سالن 50 متر مربعی (10*5) که دارای مشخصات زیر باشد:
- کف کارگاه باید بتنی، محکم و تا حد امکان تراز باشد.
- دارای یک سیستم روشنایی مناسب با قابلیت تنظیم نور در ساعات مختلف.
- دارای برق سه فار و یا یک منبع تولید کننده برق سه فاز (ژنراتور)
- دارای دیوارهایی با رنگ روشن
2-2-دارای یک دستشویی و در حد امکان یک حمام آب گرم باشد که در شرایط خاص ممکن است مورد استفاده قرار گیرد. ابعاد (1*2)
2-3-دارای یک اتاق 9 متر مربعی (3*3) جهت امور طراحی و نقشه کشی
2-4-دارای یک اتاق 12 متر مربعی (4*3) جهت رختکن، صرف غذا و استراحت
2-5-دارای قابلیت ورود و خروج خودروی باری به داخل کارگاه
2-6-دارای امنیت کافی باشد (استفاده از قفل های محکم و یا سیستم امنیتی و دزدگیر)

 


3-ابزار و وسایل اولیه:
3-1-یک میز کار فلزی که دارای مشخصات زیر باشد.
- سطحی صاف به مساحت (3 متر مربع 2*5/1) باشد.
- پایه های محکم و تراز به طول 120 تا 150 سانتی متر مربع
- 2 گیره قطعه گیر که بروی آن محکم بسته شده باشد.
3-2-دریل در انواع مختلف: دستی، پایه دار، ستونی و ... جهت انجام سوراخکاری قطعات مختلف
3-3-دستگاه های برش فلزات مانند: فرز قیچی در انواع مختلف دستی، برقی و اهرمی، اره لنگ یا اره دیسکی (جهت برش آهن آلات ضخیم)
3-4-دستگاه تراش (در صورت توانایی خرید و دارا بودن یک نیروی تراشکار)
3-5-دستگاه جوش برق و لوازم مربوط به آن مانند: ماسک، سیم جوش، دستکش و ...
3-6- ابزار الات و وسایل مختلف اتصال شامل: وسایل اندازه گیری مانند: متر نواری، خط کش فلزی، کولین، کمان اره، انواع آچار، پیچ گوشتی، انبردست، پیچ ها، پرج ها، واشرها و ...
3-7-وسایل مختلف ایمنی و حفاظتی شامل: کلاه، دستکش، کفش، پنجه آهنی، عینک
3-8-وسایل اطفاء حریق مانند: کپسول آتش نشانی
3-9-جعبه کمک های اولیه
نکته: در هنگام خرید لوازم فوق بایستی به این نکات نیز توجه گردد:
- ابزار فوق باید بصورتی خریداری گردند که بتوان از آنها برای مدتی طولانی استفاده کرد و دارای کیفیت خوبی باشند، تا در صورت استفاده کردن از آنها به دلیل حجم زیاد کار بسرعت مستحکم نگردند.
- بایستی به نحوی تهیه شوند که قابل تعمیر باشد و تعمیرات آنها نیز هزینه زیادی نداشته باشد.
- موادی را که دارای مصرف زیاد هستند حداقل برای مصرف یک ماه بصورت یک جا خریداری شوند، تا در حین کار با کمبود در نتیجه معلق ماندن و بیکاری کارگران مواجه نشویم.

 


4-نیروی انسانی:
اصلی ترین عامل گرداننده یک مجموعه کاری نیروی انسانی می باشد، بطوریکه اگر در این مجموعه انتخاب نیروها و تقسیم کار با توجه به تخصیص نیروها انجام نشود از میزان کارآیی و درآمد کارگاه کم می شود و حتی ممکن است منجر به ضرر و در نهاست ورشکستگی و تعطیلی کارگاه گردد. از آنجایی که ماشین سازی نیز یک حرفه خاص و فنی به شمار می آید لذا بایستی در بکار گرفتن نیروهای متخصص کاملا دفت کرد.

 

نیروهای لازم:
4-1-موسس:
این نیرو که معمولا به آن کارفرما یا مسئول کارگاه می گویند باید دارای حداقل:
- مدرک تحصیلی: کاردان مکانیک باشد
- سابقه انجام کارهای فنی، حداقل 4 سال
این نیرو در واقع نبض کارگاه به شمار می آید، چون در این مجموعه کوچک حکم گرداننده نظم دهنده، مسئول فروش، بازاریابی، ایده دهنده و در نهایت مغز متفکر کارگاه می باشد و میزان سوددهی و یا ضرر کارگاه را تا حد زیادی تعیین می کند.

4-2-طراحی:
فردی است متخصص در امور طراحی و نقشه کشی با مشخصات زیر:
- فوق دیپلم نقشه کشی و سابقه کاری حداقل یک سال.
- آشنا به یکی از نرم افزارهای دوز نقشه کشی

 

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله  29  صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلودمقاله راه اندازی و احداث یک کارگاه ماشین سازی

سورس برنامه ماشین حساب اندروید

اختصاصی از فی بوو سورس برنامه ماشین حساب اندروید دانلود با لینک مستقیم و پر سرعت .
سورس برنامه ماشین حساب اندروید

سورس برنامه ماشین حساب اندروید مخصوص ایکلیپس به سادگی قابل شخصی سازی شدن است و با کمی خلاقیت میتوانید یک برنامه زیبا را با نام خود به بازار ارئه نمایید

این سورس با طراحی فلت این امکان را به شما میدهد که با این طراحی آشنا شوید و در جهت بهبود زیبایی برنامه هایتان از آن بهره ببرید


دانلود با لینک مستقیم


سورس برنامه ماشین حساب اندروید

پروژه پایانی ماشین های ژنراتور 168 صفحه فایل ورد

اختصاصی از فی بوو پروژه پایانی ماشین های ژنراتور 168 صفحه فایل ورد دانلود با لینک مستقیم و پر سرعت .

پروژه پایانی ماشین های ژنراتور 168 صفحه فایل ورد


پروژه پایانی ماشین های الکتریکی 168 صفحه فایل ورد

پیشگفتار

ماشینهای الکتریکی جریان یکسو ژنراتورهایی هستند که انرژی مکانیکی را به انرژی الکتریکی جریان یکسو تبدیل می‌کنند یا موتورهایی که انرژی الکتریکی جریان یکسو را به انرژی مکانیکی تبدیل می‌کند. بیشتر ماشنیهای جریان یکسو از این جهت که درونشان ولتاژها و جریانهای متناوب سینوسی دارند با ماشینهای جریان متناوب سینوسی مشابهند. علت داشتن خروجی جریان یکسو وجود مکانیزمی است که ولتاژ متناوب درونی را در پایانه‌های ماشینها به ولتاژ یکسو تبدیل می‌کند.

اصول کار پایه‌ای ماشینهای جریان یکسو بسیار ساده‌اند، متاسفانه، این اصول به علت ساختمان پیچیده این نوع ماشینها تا حدودی در پرده ابهام می‌مانند. این ماشینها با قابلیت همه کاره بودن خود مشخص می‌شوند.


دانلود با لینک مستقیم


پروژه پایانی ماشین های ژنراتور 168 صفحه فایل ورد

دانلودمقاله دینامیک سیالات در توربو ماشین ها

اختصاصی از فی بوو دانلودمقاله دینامیک سیالات در توربو ماشین ها دانلود با لینک مستقیم و پر سرعت .

 

 مقدمه:
در طراحی کنونی توربو ماشینها، و بخصوص برای کاربردهای مربوط به موتورهای هواپیما، تاکید اساسی بر روی بهبود راندمان موتور صورت گرفته است. شاید بارزترین مثال برای این مورد، «برنامه تکنولوژی موتورهای توربینی پر بازده مجتمع» (IHPTET) باشد که توسط NASA و DOD حمایت مالی شده است.
هدف IHPTET، رسیدن به افزایش بازده دو برابر برای موتورهای توربینی پیشرفته نظامی، در آغاز قرن بیست و یکم می باشد. بر حسب کاربرد، این افزایش بازده از راههای مختلفی شامل افزایش نیروی محوری به وزن، افزایش توان به وزن و کاهش معرف ویژه سوخت (SFC) بدست خواهد آمد.
وقتی که اهداف IHPTET نهایت پیشرفت در کارآیی را ارائه می دهد، طبیعت بسیار رقابتی فضای کاری کنونی، افزایش بازده را برای تمام محصولات توربو ماشینی جدید طلب می کند. به خصوص با قیمتهای سوخت که بخش بزرگی از هزینه های مستقیم بهره برداری خطوط هوایی را به خود اختصاص داده است، SFC، یک فاکتور کارایی مهم برای موتورهای هواپیمایی تجاری می باشد.
اهداف مربوط به کارایی کلی موتور، مستقیما به ملزومات مربوط به بازده آیرودینامیکی مخصوص اجزاء منفرد توربو ماشین تعمیم می یابد. در راستای رسیدن به اهداف مورد نیازی که توسط IHPTET و بازار رقابتی به طور کلی آنها را تنظیم کرده اند، اجزای توربو ماشینها باید به گونه ای طراحی شوند که پاسخگوی نیازهای مربوط به افزایش بازده، افزایش کار به ازای هر طبقه، افزایش نسبت فشار به ازای هر طبقه، و افزایش دمای کاری، باشند.
بهبودهای چشمگیری که در کارایی حاصل خواهد شد، نتیجه ای از بکار بردن اجزایی است که دارای خواص آیرودینامیکی پیشرفته ای هستند. این اجزا دارای پیچیدگی بسیار بیشتری نسبت به انواع قبلی خود هستند که شامل درجه بالاتر سه بعدی بودن، هم در قطعه و هم در شکل مسیر جریان می باشد.
میدان های جریان مربوط به این اجزا نیز به همان اندازه پیچیده و سه بعدی خواهد بود. از آنجایی که درک رفتار پیچیده این جریان، برای طراحی موفق چنین قطعاتی حیاتی است، وجود ابزارهای تحلیلگر کارآتری که از دینامیک سیالات محاسباتی (CFD) بهره می برند، در پروسه طراحی، اساسی می باشد.
در گذشته، طراحی قطعات توربو ماشین ها با استفاده از ابزارهای ساده ای که بر اساس مدلهای جریان غیر لزج دو بعدی بودند کفایت می کرد. اگرچه با روند کنونی به سمت طراحی ها و میدانهای جریان پیچیده تر، ابزارهای پیشین دیگر برای تحلیل و طراحی قطعات با تکنولوژی پیشرفته مناسب نیستند. در حقیقت جریانهایی که با این قطعات برخورد می کنند، به شدت سه بعدی (3D)، ویسکوز، مغشوش و اغلب با سرعت ها ، در حد سرعت صوت می باشند. این جریان های پیچیده، قابل فهم و پیش بینی نیستند، مگر با بکار بردن تکنیک های مدلسازی که به همان اندازه پیچیده هستند. برای پاسخگویی به نیاز طراحی چنین قطعاتی، ابزارهای CFD پیشرفته ای لازم است که قابلیت تحلیل جریانهای سه بعدی، لزج و در محدوده صوتی، مدل سازی اغتشاش و انتقال حرارت و برخورد با پیکربندی های هندسی پیچیده را داشته باشد. علاوه بر این، جریانهای گذرا (ناپایا) و تعامل ردیفهای چندگانه تیغه ها باید مورد ملاحظه قرار گیرد.
هدف این فصل این است که بازنگری مختصری از مشخصات جریان در انواع مختلف قطعات توربوماشینها ارائه داده و نیز خلاصه ای از قابلیتهای تحلیلی CFD که مورد نیاز برای مدل کردن چنین جریانهایی هستند را بیان کند.
این باید به خواننده، درک بهتری در مورد تاثیر جریان بر طراحی چنین اجزایی و میزان کارایی مدل سازی مورد نیاز برای آنالیز اجزاء بدهد. تمرکز بر روی کاربردهای موتورهای هواپیما خواهد بود، ولی دهانه های ورودی، نازلها و محفظه های احتراق مورد توجه خواهند بود. به علاوه یک بررسی از هر دو گرایش طراحی قطعات و ابزارهای تحلیل CFD را شامل می شود. به علت پیچیدگی این موضوعات، تنها یک بحث گذرا ارائه خواهد شد. اگرچه مراجع فراهم شده اند تا به خواننده اجازه دهد این مباحث را با جزئیات بیشتر جستجو کند.
ویژگیهای میدان های جریان در توربو ماشین ها:
در این قسمت از فصل، خصوصیات اولیه میدانهای جریان توربو ماشینها بررسی خواهد شد. اگرچه بحث اساسا کاربرد موتورهای هواپیما را مورد توجه قرار خواهد داد، ولی بسیاری از خصوصیات جریان برای توربو ماشینها عمومیت دارند علاوه بر بازنگری مختصر بر ویژگیهای میدانهای جریان عمومی، طبیعت جریانهای خاص در انواع گوناگون اجزاء مورد توجه قرار خواهد گرفت.
ویژگیهای اساسی جریان:
میدان های جریان در توربو ماشین های ذاتا بسیار پیچیده و سه بعدی است. در بسیاری از موارد، جریان ها تراکم پذیرند و ممکن است از مادون صوت به جریان با سرعت صوت و به فراصوتی تغییر کنند. در مسیر جریان ممکن است شوک وجود داشته باشد و تعامل شوک و لایه مرزی ممکن است اتفاق بیفتد که باعث افت بازده می شود. گرادیان فشارهای قابل توجه، در هر جهتی می تواند وجود داشته باشد.
همچنین چرخش، یک فاکتور مهم است که رفتار جریان را تحت تاثیر قرار می دهد.
جریانها اکثرا لزج و مغشوش هستند، اگرچه ناحیه هایی با جریان لایه ای و انتقالی نیز وجود دارد. اغتشاش و تلاطم در میدان جریان می تواند در لایه مرزی و جریان آزاد اتفاق بیفتد، جایی که میزان اغتشاش، بسته به شرایط جریان بالادست، تغییر می کند. برای مثال جریان پایین دست یک محفظه احتراق یا کمپرسور چند طبقه می تواند اغتشاش جریان آزاد بسیار بیشتری نسبت به جریان ورودی به یک فن داشته باشد.
تنش های پیچیده و کاهش کارآیی می تواند ناشی از پدیده های جریان لزج، مثل لایه های مرزی سه بعدی، اثر متقابل بین لایه مرزی تیغه و دیواره، حرکت جریان نزدیک دیوار، جریان جدا شده، گردابه های مربوط به لقی نوک پره، گردابه های لبه فرار، دنباله ها، و اختلاط باشد. علاوه بر این، حرکت نسبی دیواره و انتقال بین دیواره های دوار و ثابت می تواند رفتار لایه مرزی را تحت تاثیر قرار دهد. جریان ناپایدار می تواند در اثر تغییرات شرایط بالادست جریان با زمان، گردابه های رها شده از لبه فرار تیغه ها، جدایی جریان و یا اثر متقابل بین ردیف پره های دوار و ثابت، ایجاد شود، که می تواند منجر به بارگذاری ناپایدار بر روی تیغه ها شود.
اثرات حرارت و انتقال حرارت می تواند فاکتور مهمی باشد، بخصوص در قسمتهای داغ موتور. گازهای داغ محفظه احتراق از میان توربین عبور می کنند و رگه های داغی را بوجود می آورند که توسط میدان جریان توربین منتقل می شوند. برای حفاظت از اجزائی که در معرض بالاترین دما قرار دارند، جریانهای خنک کننده از میان سوراخهای موجود در تیغه های توربین به مسیر گازهای داغ اولیه تزریق می شود و برای سطوح تیغه ها خنک کنندگی لایه ای را فراهم می آورد. به طور مشابه، جریانهای خنک کننده ممکن است به جریان اصلی در طول دیواره نیز تزریق شود.
بیشتر پیچیدگی میدانهای جریان سیال در توربو ماشین ها مستقیما تحت تاثیر مسیر جریان و هندسه اجزاء می باشد. ملاحظات هندسی شامل منحنی و شکل endwall مسیر جریان، فاصله بین ردیف های تیغه ها، گام تیغه، و stagger می شود. موارد دیگری از هندسه مسیر جریان شامل پیکربندی ردیفهای تیغه ها، از قبیل استفاده از «tandem blades»، تیغه های جداکننده، دمپرهای midspan وعملیات روی نوک تیغه ها می باشد. جزئیات بیشماری مربوط به شکل تیغه، مثل توزیع ضخامت، خمیدگی، جهت، قوس، به عقب برگشتگی، حلزونی، پیچ خوردگی، ضریب شکل، صلبیت، نسبت شعاع توپی به نوک، شعاع لبه حمله تیغه و لبه فرار تیغه، اندازه فیلت و فاصله نوک تیغه نیز از همان اهمیت برخوردارند. خنک کاری تیغه ها نیز دارای اهمیت هستند، اندازه و موقعیت سوراخهای خنک کننده درون تیغه، مسیر اولیه گاز را تحت تاثیر قرار می دهد.
بنابراین، رفتار جریان در اجزای توربو ماشینها نیز کاملا پیچیده بوده و بسیار متاثر از هندسه مسیر جریان است. یک فهم عمیق از اثرات هندسه مسیر جریان و اجزا و قطعات، به طراح اجازه خواهد داد تا از جریانی که حاصل شده، سود ببرد. برای رسیدن به این درک و برای انجام تحلیلهای لازم برای بهینه کردن رفتار بسیار پیچیده جریان لازم است از تکنولوژی پیشرفته مدلسازی جریان استفاده شود.
جریان در دستگاههای تراکمی:
سیستم های تراکمی توربو ماشینی در موتورهای هواپیما، می توانند از ترکیب های گوناگونی از اجزای محوری و یا شعاعی (سانتریفوژ) بهره ببرند. در موتورهای توربو فن معمولی، یک فن محوری در ورودی جریان قرار گرفته و بدنبال آن یک جداکننده جریان قرار دارد که جریانهای مرکزی و کنارگذر (بای پس) را از هم جدا می کند.
یک کمپرسور محوری چند طبقه در پایین دست جریان درون هسته (جریان مرکزی) قرار داده شده است و ممکن است به دنبال آن کمپرسور سانتریفوژ نیز قرار گیرد. اختصاصا در کاربردهای مربوط به موتور هواپیما و توربین گاز، اغلب از کمپرسورهای سانتریفوژ بهره برده می شود.
تمامی پیکربندی های سیستمهای تراکمی دارای جریانهای پیچیده و سه بعدی، با گرادیان فشار معکوس هستند که می توانند باعث جدایی جریان شوند. علاوه بر این چرخش، حرکت نسبی shroud، جریان های نشتی لبه ها، شوک ها، اثر متقابل شوک و لایه مرزی، اثر متقابل تیغه و endwall و نیز تاثیر متقابل ردیف تیغه ها همگی در ساختار میدان جریان کمپرسور نقش دارند. جزئیات مربوط به رفتار جریان بخصوص در مورد کمپرسورهای سانتریفوژ و محوری در بخش بعدی مورد بررسی قرار خواهد گرفت.
جریان در فن ها و کمپرسورهای محوری:
فن ها و کمپرسورهای محوری در بسیاری از موارد عمومی مشابه هم هستند، هر دو دستگاههای تراکمی هستند که مسیر جریان در آنها به نسبت دارای تغییر شعاع کمی است، و هر دو دارای جریانهای ورودی و خروجی هستند که اساسا در راستای محوری می باشند. اگرچه فن ها نوعا افزایش فشار کمتری به ازای هر طبقه نسبت به کمپرسورهای محوری دارند و تعداد طبقات کمتری داشته و اغلب تنها از یک طبقه بهره می برند. تیغه های فن ها دارای span بزرگتر و وتر بزرگتر نسبت به کمپرسورهای محوری هستند. به علت ملاحظات مکانیکی، روتور فن ها اغلب دارای دمپرهای midspan هستند که یک حلقه حمایتی صلب را تشکیل می دهد و همه تیغه ها را در موقعیت part span به هم متصل می کند. استاتورفن ها می توانند هم بدون شکاف و هم شکاف دار باشند بسته به شکل استاتور، یک جداکننده جریان یا می تواند بلافاصله در پایین دست استاتور Full-span قرار بگیرد و یا به عنوان یک ضامن نگهدارنده، برای ردیف تیغه های استاتور شکاف دار در مسیرهای جریان مرکزی و کنار گذر به کار گرفته شود.
در مقابل، کمپرسورهای محوری، معمولا افزایش فشار بیشتری به ازای هر طبقه تولید می کنند و از چند طبقه بهره می برند. کمپرسورهای محوری دارای تیغه های کوتاهتر با وتر کوچکتر نسبت به فن های محوری هستند. مسیر جریان پیوسته است و وسایل جداکننده ای در آن وجود ندارد.
بازده سیستمهای تراکمی جریان محوری می تواند تحت تاثیر پدیده های پیچیده جریان قرار گیرد. یک بحث جامع در مورد مشخصات جریان کمپرسورها در اینجا مقدور نخواهد بود. در عوض یک بازنگری مختصر در مورد بعضی از پدیده های رایج جریان که در فن ها و کمپرسورهای محوری بروز می کند، مورد توجه قرار خواهد گرفت تا یک فهم کلی از طبیعت پیچیده جریان فراهم آورد.
میدان جریان داخل مسیر تیغه ها برای فنها و کمپرسورهای محوری بطور گسترده مورد مطالعه قرار گرفته است.
«Deutsch» و «Zierke» [2,3]، جزئیات رفتار لایه های مرزی را روی سطوح مکشی و فشاری یک تیغه کمپرسور در حال کار را مورد آزمایش قرار دادند. آنها یک جریان لایه مرزی کاملا مغشوش را روی سطح مکش و در پایین دست یک حباب جدایی کوچک در لبه حمله شناسایی کردند.
در پایین دست تر، یک ناحیه جدایی دوم و در ادامه آن یک جریان کاملا جدا شده مشاهده شد. در سطح فشار، یک لایه مرزی لایه ای یافت شد که تا 50% وتر ادامه داشته و به دنبال آن یک ناحیه انتقالی وجود دارد که تا لبه فرار ادامه می یابد. به علت جریان جدا شده در سطح مکش، پروفیل سرعت در ناحیه نزدیک دنباله، همچنین ناحیه هایی با جریان معکوس را نشان داد.
اگرچه، مطالعه گسترش لایه مرزی در یک Cascade کمپرسور ایده آل سازی شده است.
«[4] Pouagare et al» یک مطالعه جامع را در مورد رفتار لایه مرزی در هر دو سطح مکش و فشار روتور یک کمپرسور محوری انجام داد. آنها استنتاج کردند که مولفه سرعت در جهت جریان درون لایه مرزی اساسا متاثر از گرادیان فشار در جهت جریان است. سرعت شعاعی درون لایه مرزی در بسیاری نقاط به سمت خارج بوده و بیشترین مقدار را در نزدیکی لبه فرار کسب می کند. جریان نشتی نوک به طور مشخصی لایه مرزی و رفتار شبه دنباله، در ناحیه خارجی span در تیغه و مسیر جریان پایین دست را تحت تاثیر قرار می دهد.
لایه مرزی دیواره ها نیز می تواند تاثیر قابل توجهی بر روی جریان موجود در گذرگاه تیغه های یک کمپرسور محوری داشته باشد. ضخامت لایه مرزی در دیواره ها در طبقات ورودی یک کمپرسور چند طبقه، می تواند به نسبت کم باشد، ولی ضخامت می تواند در طبقات پایین دست تر افزایش یافته و بخش قابل توجهی از جریان را در بر بگیرد. «[5,6] Wagner et al» اثر ضخامت لایه مرزی دیواره ها را بر روی جریان ثانویه در روتور یک کمپرسور محوری ایزوله شده مورد مطالعه قرار داد. بر این اساس معلوم گردید که ضخامت لایه مرزی دیواره ها هم بر جدایی در midspan و هم بر حرکت شعاعی جریان با تلفات بالا، از مرکز به نوک اثر می گذارد. در نتیجه توزیع شعاعی تلفات، بسته به ضخامت لایه مرزی دیواره ها تغییر می کند.
برای روترو کمپرسورهای محوری، جریان لایه مرزی shroud بطور نزدیک با رفتار جریان نشتی در نوک پره ها در ارتباط است. اگرچه جریان نشتی از میان فاصله نسبتا باریکی در نوک وارد می شود، اما تاثیر این جریان در بخش قابل توجهی از span خارجی مسیر جریان روتور احساس می شود. بر اساس یک بررسی توسط «[7] Lakshminarayana et al.»، تلفات ناشی از نشتی از نوک در ناحیه shroud-endwall حکمفرما است در حالی که تلفات ناشی از جریان ثانویه و لایه مرزی shroud دارای اهمیت کمتری هستند.
Lakshminarayana و [8,9] Murthy، یک آزمایش موشکافانه در مورد جریان در ناحیه نوک روتور یک کمپرسور محوری را انجام دادند. آنها متوجه شدند که لایه مرزی shroud-endwall از بالادست تا پایین دست روتور، خوب رفتار می کند، اگرچه در گذرگاه تیغه، تاثیر متقابل بین جریان نشتی نوک پره و لایه مرزی shroud کاملا پیچیده است. فراتر از تقریبا 25% از وتر، اثرات لایه مرزی shroud، با تاثیر گردابه های ناشی از فاصله بین تیغه و بدنه، حاکم می شود که یک ناحیه پیچیده اختلاط در 10% بیرونی span تیغه شکل می گیرد. این ناحیه اختلاط توسط نشتی در کل طول وتر تیغه تقویت می شود که باعث کاهش بار روی span بیرونی روتور می شود.
«[10] I noue et al»، اثرات میزان فاصله نوک تیغه را روی گسترش جریان shroud-end wall و رفتار گردابه نشتی بررسی کرد. معلوم شد که افزایش میزان فاصله نوک پره رابطه عکس با کارایی طبقه دارد و بازده را کاهش می دهد. با افزایش این فاصله، گردابه نشتی شدیدتر شد و حرکت های گردابی بزرگ باعث ایجاد جریان معکوس در راستای محوری و در نزدیکی shroud گردید.
ساختار جریان مهم دیگر و منبع تلفات، در کمپرسورهای محوری صوتی و فراصوتی، سیستم شوک و اثر متقابل شوک – لایه مرزی حاصل از آن می باشد. Strazisar و [11] Powell، نقشه ای از سطوح شوک در یک روتور کمپرسور محوری با عدد ماخ فراصوتی ورودی تهیه کردند. آنها مشاهده کردند که پایین دست شوک ناشی از لبه حمله در عرض span، فراصوتی است، اگرچه در ناحیه داخلی span جریان داخل گذرگاه به شرایط فروصوتی و بدون گذر از شوک دیگری، پخش می شود.
در نزدیک نوک (با عدد ماخ ورودی نسبی بالاتر آن) یک شوک نرمال در نزدیکی لبه فرار وجود دارد. چون روتور یک لبه حمله جاروب شده دارد، سطح شوک نیز مایل است، در نتیجه یک مولفه شعاعی سرعت مضاعف در پشت شوک ایجاد می شود که به علت چرخش جریان از روی شوک می باشد.

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله   188 صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید

 


دانلود با لینک مستقیم


دانلودمقاله دینامیک سیالات در توربو ماشین ها

دانلود مقاله ماشین سه فاز

اختصاصی از فی بوو دانلود مقاله ماشین سه فاز دانلود با لینک مستقیم و پر سرعت .

 

 مقدمه
بحت انرژی از دو دیدگاه اقتصادی و زیست محیطی حائز اهمیت است . بهینه سازی مصرف انرژی به این معنی است که بتوان با استفاده از تجهیزات و یا مدیریت بهتر همان کار را ولی با مصرف انرژی کمتر انجام بدهیم .
صرفه جوئی انرژی می تواند با استفاده از تجهیزات بهتر نظیر : عایق بندی مطلوب ، افزایش راندمان سیسمتهای حرارتی، و بازیابی تلفات حرارتی بدست آید از طرف دیگر اعمال مدیریت انرژی، بمنظور درک سیستمهای موجود و طریقه استفاده از آنها، میتواند در کاهش مصرف انرژی نقش مهمی داشته باشد. در سیاست گذاری انرژی باید سازمانها رویکرد سیستمی داشته باشند. برای مثال در بهینه سازی مصرف انرژی الکتریکی هدف تنها کاهش هزینه های انرژی یک یا چند الکتروموتور مشخص نیست، بلکه باید آثار اقدامات مورد نظر روی سایر سیستمها نیز بدقت مورد توجه قرار گیرد. در یک بنگاه اقتصادی صرفه جوئی انرژی میتواند موجب برتری رقابتی بنگاه گردد.
در اغلب بخشهای صنعتی انرژی الکتریکی مهمترین منبع انرژی صنعت بشمار می رود . از آنجا که موتورهای الکتریکی، مصرف کننده اصلی انرژی الکتریکی در کارخانجات صنعتی میباشند. لذا بهینه سازی مصرف انرژی در موتورهای الکتریکی که موضوع مقاله است از اهمیت ویژه ای برخوردار خواهد بود . برای درک اهمیت بهینه سازی مصرف انرژی به این مورد اشاره می کنیم که اگر راندمان موتورهای الکتریکی القائی موجود در اروپا تنها به میزان 1% افزایش یابد، هزینه مصرف انرژی الکتریکی به میزان 6/1 میلیارد دلار در سال کاهش خواهد یافت .
آمار منتشر شده از سوی وزارت نیرو نشان می دهد در سال 1373 ، 5/38% از کل انرژی الکتریکی مصرف شده در ایران توسط موتورهای الکتریکی بوده است[F1]. البته این میزان در کشورهای صنعتی تا 65% می رسد و شاخص خوبی برای نشان دادن سطح صنعتی شدن یک کشور می باشد[10] . اهداف بهینه سازی مصرف انرژی را میتوان بصورت زیر بیان نمود:
§ استفاده منطقی از انرژی
§ حفظ منابع انرژی
§ اصلاح میزان مصرف انرژی در بخشهای مصرف کننده انرژی
§ کاهش گازهای گلخانه ای و آلودگی هوا
§ اصلاح وضعیت موجود
§ کسب برتری رقابتی در بنگاههای اقتصادی
می توان اقدامات مختلفی برای صرفه جوئی انرژی الکتریکی در الکتروموتورهای صنعتی بعمل آورد. در حالت کلی این اقدامات به دو دسته تقسیم میشود:
1- اقدامات مربوط به طراحی موتور
2- اقدامات مربوط به بهره برداری از موتورها
اقدامات مربوط به بهره برداری از موتورها را نیز میتوان به دو دسته تقسیم نمود:
1- اقدامات روی موتور، نظیر تهویه، روغنکاری، و بارگذاری
2- استفاده از درایو یا کنترل کننده دور موتور
در این مقاله نخست روشهای بهینه سازی مصرف انرژی در موتورهای الکتریکی را مورد بحث قرار می دهیم سپس کاربرد درایوها در کنترل موتورهای الکتریکی و تاثیری که آنها می تواند در صرفه جوئی مصرف انرژی بگذارند مورد بررسی قرار خواهد گرفت .
1- مصرف انرژی در موتورهای الکتریکی
در سالهای اخیر بهینه سازی مصرف انرژی در صنایع بدلایل اقتصادی و زیست محیطی اهمیت بیشتری یافته و موجب شده است که اقدامات عملی گسترده ای در این زمینه بعمل آید. علی رغم اینکه یکی از بزرگترین مصرف کنندگان انرژی الکتریکی در بخش صنعت موتورهای الکتریکی می باشند ، لیکن در زمینه افزایش بازدهی مبدلهای انرژی الکتریکی به مکانیکی مستقر در صنایع اقدامات عملی چندانی بعمل نیامده است. بدیهی است که افزایش بازدهی محرک های صنعتی نه تنها از نظر اقتصادی مورد توجه استفاده کنندگان می باشد بلکه در برنامه‌ریزی انرژی در سطح ملی نیز حائز اهمیت است .
مطالعات انجام شده در صنایع ایران حکایت از وضعیت نابسامان انتخاب و بهره برداری از موتورهای الکتریکی دارد [F1]. بر اساس این تحقیقات اغلب موتورها بزرگتر از میزان نیاز انتخاب شده و در شرائط بدی نگهداشت میشوند. استفاده از موتورهای با راندمان بالا در ایران رایج نبوده و گزارش موثری از استفاده از درایو جهت صرفه جوئی انرژی در دست نیست. کاربردهای صنعتی بسیاری می تو.ان یافت که موتورها در بازدهی بسیار پایین تر از مقدار حداکثر قرار دارند . بعنوان مثال در یکی از کارخانجات صنعتی کشورمان در یک مورد ، متوسط توان مصرفی در یک موتور القائی سه فاز صنعتی تنها 28% توان نامی اندازه گیری شده است [F1]. بدیهی است پایین بودن توان خروجی، تا این حد تاثیرات منفی قابل توجهی بر بازدهی و ضریب توان موتور خواهد داشت .
از سوی دیگر دولت نیز نتوانسته است در ترویج فرهنگ استفاده بهینه از انرژی الکتریکی توفیقات خوبی داشته باشد. بعنوان مثال وزارت نیرو و سازمانهای وابسته به آن که مشخصا در زمینه بهینه سازی مصرف انرژی الکتریکی در سطح کلان عمل میکند هنوز در ارتباط با کاهش مصرف داخلی نیروگاهها اقدام موثری بعمل نیاورده است. در حالیکه پتانسیل صرفه جوئی انرژی الکتریکی زیادی در نیروگاهها وجود دارد.
2- موانع در سیاست گذاری انرژی
در ایران موانعی که سر راه بهینه سازی مصرف انرژی الکتریکی وجود دارد را میتوان بصورت زیر دسته بندی نمود:
- سیاست دولت در پرداخت سوبسید به صنایع
- عدم آگاهی مدیران صنایع از روشهای صرفه جوئی انرژی الکتریکی
- ضعف دانش فنی مهندسین مرتبط با بهینه سازی مصرف انرژی
- نگرانی از ضریب اطمینان درایو و آثار منفی آن روی شبکه و موتور
- نداشتن یک رویکرد سیستمی در استفاده از موتورهای با راندمان بالا
3- انتخاب موتور مناسب
موتورهای القائی سه فاز و یک فاز به دلیل تنوع مصرف در کاربردهای زیادی مورد استفاده قرار می گیرند. مشخصه های بارمکانیکی ناشی از کاربرد و مورد مصرف می باشد. بدیهی است موتور در صورتی می تواند بار مکانیکی متصل به آن را تامین کند که مشخصه عملکردی موتور منطبق بر مشخصه بار مکانیکی باشد .
3-1- تطابق موتور و بار
همانطور که در بالا اشاره شد موتور و بار دارای مشخصه های خاص خود می باشند . منظور از تطابق بین موتور و بار انطباق بین مشخصه های موتور و مشخصه های بار متصل به محور موتور میباشد .
مشکل اصلی در صنایع کشور آن است که در اغلب موارد تطابق مطلوبی بین مشخصه های بار و موتور وجود ندارد. توان اغلب موتورها بیش از بار متصل به محور شان می باشد و با توجه به اینکه قیمت تمام شده موتور متناسب با توان آن می‌باشد، لذا بدیهی است انتخاب موتور با توان بیش از نیاز بار، علاوه بر افزایش هزینه اولیه موتور موجب افزایش سایر هزینه ها از قبیل کابل کشی و نصب و راه اندازی و تعمیر خواهد شد .
از طرف دیگر در صورتیکه موتور انتخاب شده بزرگتر از حد لازم باشد در این صورت موتور در حالت بار کامل و یا نزدیک به بار کامل کار نکرده و لذا بازدهی آن پایین تر از مقدار حداکثر آن خواهد بود . و خود این امر اشکالات جدی در بهینه سازی مصرف انرژی ایجاد خواهد کرد .
در موتورهای القائی سه فاز در صورت کاهش میزان بازدهی موتور ، به ویژه به میزان کمتر از 80% بار کامل ، شاهد کاهش قابل توجه در بازدهی موتور خواهیم بود . متاسفانه در اکثر موارد به این نکته توجه نشده و تنها تاثیر نامطلوب انتخاب موتور بزرگتر از حد لازم بر هزینه اولیه مورد توجه قرار می گیرد . در صورتیکه محاسبات انجام شده حاکی از آن است که تاثیر انتخاب نامناسب موتور بر هزینه های متغیر (هزینه اتلاف انرژی اضافی) قابل توجه و بمراتب بیش از افزایش هزینه ثابت اولیه می باشد .
یک مثال این موضوع را روشن خواهد کرد :
مثال : فرض می کنیم برای انجام یک کار مکانیکی ، موتور القائی سه فاز با توان خروجی 110 کیلو وات مناسب باشد و بجای آن موتور با توان 132 کیلو وات انتخاب شود . اطلاعات زیر را مورد توجه قرار می دهیم :
- بازدهی موتور در بار کامل = 2/94%
- بازدهی موتور در 3/83% بار کامل = 5/92%
- طول عمر مفید موتور = 15 سال
- ضریب کارکرد = 8/0
با انجام کمی محاسبات می توان نتیجه گرفت که مصرف انرژی در طول 15 سال بمقدار 600/937 کیلو وات ساعت افزایش پیدا خواهد کرد. مطالب فوق این واقعیت را بیان می کند که انتخاب موتور مناسب به لحاظ اقتصادی حائز اهیمت فراوان بوده و لذا تطابق بین بار و موتور از اهمیت ویژه ای برخوردار است . انتخاب موتور بزرگتر از حداقل مورد نیاز به دلایل زیر غیر اقتصادی می باشد :
1- با افزایش توان موتور قیمت آن یعنی هزینه اولیه افزایش می یابد .
2- با افزایش توان موتور هزینه های نگهداری و تعمیرات آن افزایش می یابد .
3- با افزایش توان موتور بدلیل پایین آمدن ضریب بار ، بازدهی موتور کاهش یافته و بدین ترتیب انرژی تلف شده افزایش می یاید .
3-2- موتورهای با راندمان بالا (Energy Efficient Motors)
گرچه قیمت موتورهای با راندمان بالا بیشتر از موتورهای استاندارد است، ولی در اغلب کاربردها استفاده از آنها کاملا اقتصادی است. مخصوصا در کاربردهائی که:
- مدت زمان روشن بودن موتور بیش از زمان خاموش بودن ان باشد
- مدت زمان روشن بودن موتور بیش از 2000 ساعت در سال باشد
- گشتاور بار نسبتا ثابت بوده و موتور بدرستی به بار تطبیق شده باشد.
استفاده از موتورهای با راندمان بالا توصیه میشود. بارهائی چون میکسرها، نقاله ها و فیدرها از این نوع هستند. اهمیت موضوع وقتی آشکار میشود که توجه کنیم که هزینه انرژی مصرفی یک الکتروموتور در طول عمر مفید آن 10 تا 20 برابر قیمت موتور است[16]. موتورهای با راندمان بالا علاوه بر صرفه جوئی انرژی معمولا مزیتهای دیگری نیز دارند. برای مثال آنها جریان های بیشتری را در هنگام راه اندازی تحمل میکنند و حرارت و نویزکمتری تولید میکنند. هر چند که موتورهای با راندمان بالا تنها 2 تا 3 درصد راندمان را بهبود میدهند، اما اگر در انتخاب و بکارگیری آنها بجای یک موتور کل سیستم در نظر گرفته شود، اثر بخشی کار بالا خواهد رفت. با رویکرد سیستمی به موضوع و در نظر گرفتن عوامل دیگر نظیر هزینه های تعمیر و نگهداشت و بهره برداری میتوان به کارائی این موتورها بیشتر پی برد. میزان صرفه جوئی انرژی در صورت استفاده از موتور با راندمان بالا، به جای موتورهای استاندارد از رابطه زیر قابل محاسبه است:
در رابطه فوق hp توان موتور بر حسب اسب بخار، l ضریب بار( در صد از بار کامل تقسیم بر 100)، hr ساعات کار در طول سال، c متوسط قیمت انرژی (قیمت هر کیلووات ساعت انرژی)، std راندمان موتور استاندارد (%)، و ee راندمان موتور با راندمان بالا (%) است.
توصیه میشود هنگام خرید موتور و یا سفارش ساخت ماشین به سازندگان ماشین از موتورهای با راندمان بالا استفاده گردد. همچنین معمولا اقتصادی است که بجای سیم پیچی کردن موتورهای سوخته و استفاده مجدد از آنها، از موتورهای با راندمان بالا استفاده گردد. زمان بازگشت سرمایه(به سال) در خرید این نوع موتورها، بطور ساده عبارت خواهد بود از:
4- اقدامات مورد نیاز برای بهبود عملکرد سیستمهای مرتبط با الکتروموتورها
یک موتور معمولا با اجزا و سیستمهای دیگر در ارتباط است. برای بهبود عملکرد الکتروموتورها لازم است سیستمهای مرتبط با موتور نیز در نظر گرفته شود. این سیستمها شامل شبکه برق، کنترل کننده های موتور، الکتروموتور و سیستم انتقال نیرو میگردد.
4-1- کیفیت توان Power Quality
مسائل کیفیت توان شبکه شامل کلیه اختلالات شبکه برق مثل عدم تقارن در ولتاژ، افت ولتاژ، چشمک زدن، اسپایک، سیستم ارت بد ، هارمونیکها و نظایر آن میشود [5]. از آنجا که کیفیت توان تاثیر زیادی در اتلاف انرژی دارد، لازم است یک مهندس مجرب وضعیت شبکه برق تاسیسات را زیر نظر داشته باشد.
4-2- تثبیت ولتاژ شبکه
تا آنجا که ممکن است باید ولتاژ اعمالی به موتور نزدیک به ولتاژ کار موتور باشد. گرچه تغییرات 10% در ولتاژ موتور مجاز است اما از نقطه نظر اتلاف انرژی میزان انحراف از ولتاژ نامی موتور باید کمتر از 5% باشد. تغییر ولتاژ موتور موجب افت ضریب قدرت، عمر مفید موتور و راندمان میگردد [6]. شکل(1)
شکل(1): بررسی تائیر تغییرات ولتاژ اعمالی به موتور روی تورک، جریان راه اندازی، جریان بار کامل، راندمان و ضریب قدرت
اگر ولتاژ موتور بیش از 5% کاهش پیدا کند، راندمان بین 2 تا 4 درصد افت پیدا کرده و دمای موتور حدود 15 درجه افزایش می یابد و این افزایش دما عمر عایق موتور را کاهش خواهد داد. در شکل(2) عمر موتور در دماهای کار مختلف و با کلاسهای عایقی مختلف نشان داده شده است.
شکل (2): بررسی تاثیر دمای کلافهای موتور روی عمر مفید آن برای موتورهای با کلاس عایقی مختلف
4-3- عدم تقارن فاز
عدم تقارن فاز باید کمتر از 1% باشد. عدم تقارن فاز بصورت زیر توسط NEMA تعریف شده است:
برای مثال اگر ولتاژهای فاز بترتیب 462 و 463 و 455 ولت باشد. متوسط ولتاژ سه فاز برابر با 460 ولت میشود و در صد عدم تقارن بصورت زیر محاسبه خواهد شد:
4-4- ضریب قدرت
ضریب قدرت پائین موجب افزایش جریان کابلها و ترانسقورماتورها و افت ولتاژ شده و بدین ترتیب باعث کاهش ظرفیت سیستم تغذیه میشود [7]. ضریب قدرت پائین ناشی از بار کم در شفت موتور است. در شکل (3) منحنیهای ضریب قدرت برای بارهای مختلف و رنجهای توانی متفاوت موتورها آمده است[8] . بوضوح مشاهده میشود با کاهش بار موتور ضریب قدرت تغییرات قابل توجهی میکند.
شکل (3): تغییرات ضریب قدرت متناسب با بار موتور
5- روشهای عملی برای افزایش بازدهی موتور
اشاره شد که بالا بردن بازدهی متوسط موتورهای القائی به لحاظ اقتصادی از اهمیت ویژه ای برخوردار است . بدیهی است نحوه عمل و دستیابی به نتایج مطلوب وابسته به نوع و اندازه موتور ، شرایط بارگذاری ، نحوه نگهداری و غیره بوده و لذا نمی توان دستور العمل کلی برای ارتقاء بازدهی کلیه موتورهای القائی ارائه داد. بطور کلی اقدامات لازم برای بالا بردن بازدهی موتورهای القائی را می توان به دو دسته تقسیم نمود . دسته اول تمهیداتی است که در زمان طراحی و ساخت موتور باید بکار گرفت . دسته دوم شامل مجموعه اقدامات عملی جهت بالا بردن بازدهی موتورهای القائی در حال کار در صنایع می شود .
اقدامات عملی ساده ای منجر به افزایش راندمان کار می گردد به عنوان مثال مقدار معمول جریان بی باری در موتورهای القائی سه فاز در محدوده 3 تا 5 درصد جریان نامی موتور است . ولی در بررسی های بعمل آمده مشاهده شده است که در اکثر موراد جریان بی باری موتور بیشتر از این مقدار بوده و در برخی موارد تا 12% جریان نامی افزایش یافته است . این افزایش در جریان بی باری موتور بعلت عدم نگهداری صحیح از موتور است . در اکثر موارد این شرائط نامطلوب در حالات بارگذاری نیز مشاهده می شود. به این معنی که با اعمال بار مکانیکی غیر مفید به محور موتور ، بصورت اصطکاکهای مکانیکی ناشی از عدم نگهداری صحیح، موجب میشود که موتور بار اعمال شده را در جریان الکتریکی بیشتری تامین می کند . و در واقع بخشی از توان الکتریکی ورودی صرف تامین بار و قسمت دیگر آن برای غلبه بر اصطکاک مکانیکی مصرف می شود .
بدین ترتیب موارد زیر را در ارتباط با تلفات اهمی موتور میتوان بیان کرد :
1- تلفات اهمی موتور متغیر بوده و تابعی از میزان و نحوه بارگذاری موتور می باشد .
2- در بسیاری از موارد عدم نگهداری صحیح از قسمتهای چرخان موتور به ویژه بلبرینگ محور موتور ، موجب ایجاد بار مجازی ناشی از افزایش اصطکاک مکانیکی شده و لذا جریان ورودی موتور در حالت بی باری و بار از حد مطلوب و اعلام شده توسط سازنده بیشتر خواهد شود
3- افزایش جریان ورودی موتور موجب بالا رفتن تلفات اهمی و حرارت ایجاد شده در سیم پیچ شده و لذا درجه حرارت اطراف سیم پیچ افزایش خواهد یافت .
از مشخصات بارز تلفات مکانیکی موتور دشواری محاسبه میزان و تعیین منابع آن است . بخش عمده تلفات مکانیکی در قسمت های چرخان موتور بوده و ناشی از اصطکاک و بار می باشد و لذا میزان تلفات مکانیکی تا حد زیادی وابسته به شرایط نگهداری موتور دارد . با روغن کاری مناسب و بموقع بلبرینگ و نظافت قسمتهای چرخان موتور و همچنین اطمینان از بالانس بودن محور ، میتوان تلفات مکانیکی موتور را به حداقل رساند بدین ترتیب در ارتباط با تلفات مکانیکی موتور میتوان موارد زیر را اظهار داشت :
1- میزان تلفات مکانیکی تابعی از شرایط نگهداری موتور می باشد .
2- با انجام اقدامات مناسب در نگهداری موتور می توان تلفات مکانیکی را بسادگی در مقدار حداقل خود نگه داشت.
3- تلفات مکانیکی نیز منجر به افزایش درجه حرارت بویژه در قسمتهای چرخان موتور می شود .
انواع تلفات موتور بدون توجه به نوع آن منجر به ایجاد حرارت می شود بدین ترتیب خنک کاری موتور بویژه در شرائطی که موتور زیر بار است از اهمیت ویژه ای برخوردار است . بالا رفتن درجه حرارت موتور باعث کاهش عمر مفید آن می‌شود .
در موارد زیادی مشاهده شده است که بدلیل عدم رعایت نکات ساده و مهم در نگهداری موتور باعث کاهش بازدهی سیستم خنک کن شده و درجه حرارت موتور در حالت بار نامی افزایش پیدا کند . در این گونه موارد گاهی اوقات بجای رفع اشکال نگهداری، اقدام به جایگزین کردن موتور با توان بیشتر می شود که این امر خود منجر به کاهش بازدهی سیستم و اتلاف انرژی خواهد شد .
بر اساس تجارب شرکت پرتو صنعت نوع دیگری از اشکالات مربوط به سیم پیچی موتورهای معیوب توسط افراد غیر متخصص می شود. مشاهدات ما نشان می دهد که در برخی از موارد موتور بدفعات مورد سیم پیچی قرار می گیرد . عدم رعایت نکات فنی در عایق بندی موتور سیم پیچی شده و همچنین استفاده از ابزار و آلات غیر اصولی در درآوردن سیم پیچی سوخته شده موتور نتایج بدی بدنبال دارد .
بعنوان یک اصل تجربی موتورهائی که به این شیوه سیم پیچی مجدد می شوند برای کار با اینورتر یا کنترل کننده دور موتور مناسب نیستند. اغلب این موتورها بدلیل آسیب هائی که به مدار مغناطیسی آنها در حین سیم پیچی وارد می شود از جریان بی باری بالاتر از حد معمول برخوردار بوده و عایق بندی آنها برای کار با اینورتر مناسب نمی باشد . این نوع موتورها حرارت بیشتری نسبت به موتورهای سالم دارند و تلفات انرژی زیادی ایجاد می کنند . ضمناً این موتورها بمراتب آسیب پذیرتر از موتورهای فابریک می باشند . توصیه می شود در سیم پیچی موتورهای آسیب دیده از تکنیسین های مجرب و ابزارآلات مناسب استفاده شود . ضمناً تا زمانیکه اطمینان از فرآیند کار حاصل نشده باشد از استفاده از این نوع موتورها همراه با کنترل کننده دور موتور اجتناب گردد .
توصیه می شوداگر قصد تعویض این نوع موتورها را دارید و یا میخواهید موتورهای جدیدی تهیه کنید، موتورهائی تهیه کنید که راندمان بالاتری داشته باشند.
6- دستور العملهای لازم برای بهبود عملکرد موتورهای الکتریکی
اشاره شد که عوامل موثر در بازدهی موتورهای الکتریکی را می توان بصورت زیر بیان نمود :
- عوامل موثر در مراحل طراحی و ساخت
- عوامل موثر در بهره برداری
بررسی عوامل موثر فوق خارج از حوصله این مقاله است. یک مطالعه خوب از عوامل فوق توسط آقای دکتر اوروعی در سال 1373 انجام گرفته است .[F1] در اینجا بطور خلاصه به عوامل موثر در بهره برداری از موتور که به افزایش بازدهی آنها منجر خواهد شد اشاره میشود.در جدول(1) خلاصه ای از عوامل موثر در بازدهی موتورهای الکتریکی آمده است .
جدول (1) عوامل موثر در بازدهی موتورهای الکتریکی
همان طور که مشاهده می شود مجموعه اقدامات ساده فوق خصوصاً اقداماتی که به عوامل وابسته به شرایط نگهداری موتور می شود می تواند منجر به صرفه جوئی اقتصادی قابل توجهی شود .
برای اطمینان یافتن از اینکه بازدهی موتورهای مستقر در صنایع و سایر کاربردها در حد مطلوب قرار دارد می توان نسبت به تدوین شناسنامه صنعتی برای هر موتور ( و بویژه موتورهای بزرگ) اقدام نموده و با ثبت اطلاعات مورد نظر از جمله موارد زیر بازدهی این موتور ها را مورد بررسی قرار داد :
- میزان بار (درصد از بار کامل)
- میزان تغییرات بار ( درصد از بار کامل)
- میزان تغییرات سرعت (درصد از سرعت سنکرون)
- میزان تغییرات ولتاژ شبکه (درصد از ولتاژ نامی)
توصیه میشود کارخانجاتی که در آنها تعداد موتور مورد استفاده زیاد می باشد نسبت به جمع آوری اطلاعات فوق و اقدامات اصلاحی اقدام نمایند.
7- دسته بندی اقدامات لازم برای بهینه سازی مصرف انرژی
برای روشن شدن تاثیر اقدامات مختلف برای افزایش بازدهی موتورهای الکتریکی در جدول(2) نتایج قابل انتظار این اقدامات برای دسته ای از موتورهای القائی با توان خروجی 2/2 تا 30 کیلو وات نمایش داده شده است[F1] .
جدول (2) : اقدامات محتلف برای افزایش بازدهی موتورهای الکتریکی با توان 2/2 تا 30 کیلو وات .
8- تکنولوژی الکترونیک قدرت و درایوهای AC
تکنولوژی الکترونیک قدرت(Power Electronics)، بهره وری و کیفیت فرایندهای صنعتی مدرن را بی وقفه بهبود میبخشد. امروزه با کمک همین تکنولوژی امکان استفاده از منابع انرژی غیرآلاینده بازیافتی(Renewable Energy)، نظیر باد و فتو ولتائیک فراهم شده است. تخمین زده میشود که با استفاده از الکترونیک قدرت، حدود 15 تا 20 درصد امکان صرفه جوئی انرژی الکتریکی وجود دارد[17]. در واقع با کاهش بیوقفه قیمت ها در عرصه الکترونیک قدرت زمینه برای حضور آنها در کاربردهای صنعتی، حمل ونقل و حتی خانگی فراهم میگردد.
نیروی محرک بیشتر پمپها و فن ها موتورهای القائی هستند که در دور ثابت کار میکنند. لیکن در سالهای اخیر با پیشرفتهای انجام گرفته در زمینه تکنولوژی الکترونیک قدرت ، استفاده از موتورهای القائی قفس سنجابی همراه با کنترل کننده دور موتور (AC DRIVE یا اینورتر یا بطور ساده درایو) رو به گسترش است . درایوها دستگاههائی هستند که توان ورودی با ولتاژ و فرکانس ثابت را به توان خروجی با ولتاژ و فرکانس متغیر تبدیل میکنند. باید توجه کرد که دور یک موتور تابعی از فرکانس منبع تغذیه آن است. برای این منظور یک درایو نخست برق شبکه را به ولتاژ DC تبدیل کرده و سپس آنرا با استفاده از یک اینورتر مجددا به ولتاژ AC با فرکانس و ولتاژ متغیر تبدیل میکند. در شکل(4) قسمتهای اصلی یک درایو ولتاژ پائین نشان داده شده است. همانطور که مشاهده میکنید قسمت اینورتر متشکل از سوئیچهای قدرتی است که در سالهای اخیر تغییرات تکنولوژیک زیادی پیدا کرده اند. در واقع با معرفی سوئیچهای قدرتی چون IGBT با قیمتهای رو به کاهش، زمینه برای عرضه درایوهای با قیمت مناسب فراهم شد. در هر حال خاطر نشان میکنیم که شکل موج خروجی درایو ترکیبی از پالسهای DC با دامنه ثابت است. این موضوع موجب میشود که خود درایو منشا اختلالاتی در کار موتور شود. برای مثال کیفیت شکل موج خروجی درایو میتواند سبب اتلاف حرارتی اضافی ناشی از مولفه های هارمونیکی فرکانس بالا در موتور شده و یا موجب نوسانات گشتاور Torque Pulsation در موتور گردد. با این حال درایوهای امروزی بدلیل استفاده از سوئیچهای قدرت سریع این نوع مشکلات را عملا حذف کرده اند.
شکل(4): ساختمان یک کنترل کننده دور موتور ( فقط قسمتهای قدرت نشان داده شده است).
کنترل کننده های دور موتورهای الکتریکی هر چند که ادوات پیچیده ای هستند ولی چون در ساختمان آنها از مدارات الکترونیک قدرت استاتیک استفاده می شود و فاقد قطعات متحرک می باشند، از عمر مفید بالائی برخوردار هستند . مزیت دیگر کنترل کننده های دور موتور توانائی آنها در عودت دادن انرژی مصرفی در ترمزهای مکانیکی و یا مقاومت های الکتریکی به شبکه می باشد . در چنین شرائطی با استفاده از کنترل کننده های دور مدرن می توان از اتلاف این نوع انرژی جلوگیری نمود . بطوریکه در برخی کاربردها قیمت انرژی بازیافت شده از این طریق ، در کمتر از یکسال معادل هزینه سرمایه گذاری سیستم بازیافت انرژی می شود .
9- کنترل کننده های دور موتور
تا اینجا درمورد مجموعه اقداماتی که برای بهینه سازی مصرف انرژی میتوانستیم روی موتورهای الکتریکی اعمال کنیم بحث شد. اشاره شد که در کشور ایران در سال 73 بیش از 35 درصد مصرف انرژی در موتورهای الکتریکی بخش صنعت بوده است . البته این مقدار در کشورهای صنعتی تا 65 در صد نیز میرسد. این امر اهمیت بهینه سازی مصرف انرژی در موتورهای الکتریکی را نشان میدهد. در این قسمت از مقاله در مورد تاثیر استفاده از کنترل کننده های دور موتور در کاهش مصرف انرژی صحبت خواهیم کرد. سعی میکنیم با استفاده از تعدادی مثال اهمیت
موضوع را نشان دهیم . بطور خلاصه در کاربردهای صنعتی زیادی، صرفه جوئی که با استفاده از کنترل کننده دور موتور در مصرف انرژی حاصل میشود بمراتب بیشتر از اقدامات برشمرده در قسمتهای قبلی مقاله است.
استفاده از موتورهای مجهز به کنترل کننده دور موتور ، امکان اعمال تغییرات لازم در سرعت موتور فن و یا پمپ را بطور دائم فراهم آورده و بدین ترتیب می توان با توجه به فرآیند مورد نظر از اتلاف انرژی ایجاد شده در تنظیم کننده های مکانیکی جلوگیری نمود . با استفاده از درایو موتور به بار تطبیق داده شده ، و هر گونه نیاز به خاموش و روشن کردن موتور و یا ادوات تنظیم کننده نظیر شیر یا دمپر حذف می گردد . همچنین کنترل سرعت دقیق و متعاقب آن توان خروجی قابل دسترسی بوده و با توجه به استفاده از مدارات الکترونیکی ، استهلاک قسمتهای کنترل کننده در حد بسیار پایین خواهد بود . تصمیم گیری در مورد استفاده از موتور با کنترل کننده دور متغییر بستگی به نوع کاربرد مورد نظر دارد . از آنجا که هزینه اولیه این سیستمها (کنترل کننده دور موتور) بیش از سایر روشها می باشد و با توجه به اینکه صرفه جوئی ناشی از بالا بودن بازدهی تنها بصورت کاهش هزینه راهبری نمایان می شود، لذا استفاده از موتورهای مجهز به کنترل کننده دور در طول زمان منجر به صرفه جوئی اقتصادی می شود . معمولاً بسته به نوع کاربرد زمان بازگشت سرمایه گذاری بین یک تا سه سال متغیر خواهد بود .
متاسفانه در اکثر موارد مهمترین عامل در انتخاب محرک قیمت اولیه است. بدین معنی که سیستم بر مبنای کمینه سازی هزینه اولیه انتخاب می شود. در حالیکه در طول عمر مفید آن هزینه قابل توجهی صرف انرژی تلف شده و یا تعمیر و نگهداری می شود .
در شکل(5) میزان استفاده از کنترلرهای دور متغیر نشان داده شده است.
کنترل کننده های دور موتور انواع مختلفی دارند. آنها قادرند انواع موتورهای AC و DC را کنترل کنند. قیمت کنترلرها وابسته به نوع تکنولوژی بکار رفته در ساختمان آنها میباشد. ساده ترین روش کنترل موتورهای AC روش تثبیت نسبت ولتاژ به فرکانس(یا کنترل V/F ثابت) میباشد. اینک این روش، بطور گسترده در کاربردهای صنعتی مورد استفاده قرار میگیرد. این نوع کنترلرها از نوع اسکالر بوده و بصورت حلقه باز با پایداری خوب عمل میکنند. مزیت این روش سادگی سیستمهای کنترلی آن است. در مقابل این نوع کنترلرها برای کاربردهای با پاسخ سریع مناسب نمیباشند.
روبوتها و ماشینهای ابزار نمونه هائی از کاربردهای با دینامیک بالا هستند. در این کاربردها روشهای کنترلی برداری استفاده میشود. در روشهای کنترلی برداری با تفکیک مولفه های جریان استاتور به دو مولفه تورک ساز و فلو ساز، و کنترل آنها با استفاده از رگولاتورهای PI ترتیبی داده میشود که موتور AC نظیر موتور DC کنترل شود. و بدین ترتیب تمام مزایای موتور DC از جمله پاسخ گشتاور سریع آنها در موتورهای AC نیز در دسترس خواهد بود. برای مثال پاسخ گشتاور در روشهای برداری حدود 10 – 20ms و در روشهای کنترل مستقیم گشتاور(Direct Torque Control) این زمان حدود 5ms است. اینک روشهای کنترل برداری متعددی پیاده سازی شده است که بررسی آنها خارج از حوصله این مقاله است. در هر حال نوع کنترلر مطلوب، متناسب با کاربرد انتخاب میگردد. در شکل(6) خلاصه ای از انواع روشهای کنترل موتورهای AC نمایش داده شده است.
شکل(6): خلاصه ای از انواع روشهای کنترل موتورهای AC
10- مزایای استفاده از کنترل کننده های دور موتور
مزایای استفاده از کنترل کننده های دور موتور هم در بهبود بهره وری تولید و هم در صرفه جوئی مصرف انرژی در کاربردهائی نظیر فنها ، پمپها، کمپروسورها و دیگر محرکه های کارخانجات ، در سالهای اخیر کاملا مستند سازی شده است. کنترل کننده های دور موتور قادرند مشخصه های بار را به مشخصه های موتور تطبیق دهند. این اسباب توان راکتیو ناچیزی از شبکه میکشند و لذا نیازی به تابلوهای اصلاح ضریب بار ندارند. در زیر به مزایای استفاده از کنترل دور موتور اشاره میشود:
1- در صورت استفاده از کنترل کننده های دور موتور بجای کنترلرهای مکانیکی، در کنترل جریان سیالات، بطور مؤثری در مصرف انرژی صرفه جوئی حاصل میشود. این صرفه جوئی علاوه بر پیامدهای اقتصادی آن موجب کاهش آلاینده های محیطی نیز میشود.
2- ویژگی اینکه کنترل کننده های دور موتور قادرند موتور را نرم راه اندازی کنند موجب میشود علاوه بر کاهش تنشهای الکتریکی روی شبکه ، از شوکهای مکانیکی به بار نیز جلو گیری شود. این شوکهای مکانیکی میتوانند باعث استهلاک سریع قسمتهای مکانیکی ، بیرینگها و کوپلینگها، گیربکس و نهایتا قسمتهائی از بار شوند. راه اندازی نرم هزینه های نگهداری را کاهش داده و به افزایش عمر مفید محرکه ها و قسمتهای دوار منجر خواهد شد.
3- جریان کشیده شده از شبکه در هنگام راه اندازی موتور با استفاده از درایو کمتر از 10% جریان اسمی موتور است.
4- کنترل کننده های دور موتور نیاز به تابلوهای اصلاح ضریب قدرت ندارند.
5- در صورتی که نیاز بار ایجاب کند با استفاده از کنترل کننده دور ، موتور میتواند در سرعتهای پائین کار کند . کار در سرعتهای کم منجر به کاهش هزینه های تعمیر و نگهداشت ادواتی نظیر بیرینگها، شیرهای تنظیم کننده و دمپرها خواهد شد.
6- یک کنترل کننده دور قادر است رنج تغییرات دور را ، نسبت به سایر روشهای مکانیکی تغییر دور، بمیزان قابل توجهی افزایش دهد. علاوه بر آن از مسائلی چون لرزش و تنشهای مکانیکی نیز جلو گیری خواهد شد.
7- کنترل کننده های دور مدرن امروزی با مقدورات نرم افزاری قوی خود قادرند راه حلهای متناسبی برای کاربردهای مختلف صنعتی ارائه دهند.
11- مدیریت بهینه سازی مصرف انرژی و نقش کنترل کننده های دور موتور
امروزه در کشورهای صنعتی الزامات زیست محیطی از یکسو و رقابت بنگاههای اقتصادی از سوی دیگر ، مدیریت بهینه سازی انرژی را در بصورت یک امر غیر قابل اجتناب در آورده است. مجموعه اقداماتی که برای صرفه جوئی انرژی در کارخانجات صورت میگیرد شامل مواردی چون جایگزینی موتورهای الکتریکی با انواع موتورهای با بازدهی بالا، استفاده از کنترل کننده های دور موتور در کاربردهائی که اتلاف انرژی در آنها زیاد است، بازیافت انرژی از پروسه های حرارتی و نظایر انها میشود. نتایج اعمال چنین اقداماتی نشان میدهد در موارد زیادی ، و بخصوص در جاهائی که از فنها ، پمپها، و کمپروسورها در فرایند تولید استفاده میشود، بکارگیری کنترل کننده های دور موتور علاوه بر انعطاف پذیر نمودن کنترل فرایند، تاثیر قابل توجهی در کاهش مصرف انرژی داشته است. در بسیاری از موارد زمان بازگشت سرمایه بین یک تا سه سال میباشد.
کمتر از 10% موتورها مجهز به درایو هستند. در حالیکه در بیش از 25% آنها استفاده از درایو توجیه اقتصادی دارد[16].
بر اساس مطالعات انجام گرفته توسط اتحادیه اروپا [10] تا سال 2005 میلادی پتانسیل صرفه جوئی انرژی بالغ بر 63.5 TWh در صنایع کشورهای عضو اتحادیه اروپا وجود دارد. که از این میزان بیش از 44.7 TWh آن توجیه اقتصادی دارد. این میزان صرفه جوئی انرژی تنها در سایه استفاده از موتورهای با راندمان بالا و درایو بدست میاید. که سهم درایو در صرفه جوئی دارای توجیه اقتصادی حدود 63% است. نتایج چنین مطالعاتی را بطور خلاصه در جدول(3) مشاهده میکنید.
جدول(3): پتانسیل فنی و اقتصادی صرفه جوئی انرژی با استفاده از موتورهای با راندمان بالا(EEM) و کنترل دور(VSD) در کشورهای عضو اتحادیه اروپا تا سال 2005.
مطالعه فوق با تفکیک بار پتانسیل اقتصادی صرفه جوئی انرژی را نیز در اتحادیه اروپا مشخص نموده است. که نتایج آنرا در شکل(7) مشاهده میکنید.
شکل(7): پتانسیل صرفه جوئی اقتصادی درکشورهای عضو اتحادیه اروپا به تفکیک نوع بار
12- پمپها و فنها
چیزی حدود 40 درصد انرژی مصرفی در بخش صنعت در پمپها و فنها مصرف میشود. برای مثال در انگلستان ترکیب مصرف کنندگان انرژی در موتورها و در کاربردهای صنعتی بصورت زیر است[15].
شکل(8): میزان انرژی مصرفی توسط بارهای مختلف در انگلستان
اغلب این سیستمها از موتورهای القائی با روتور قفس سنجابی استفاده میکنند. و خروجی توسط ادواتی چون شیرهای تنظیم کننده و دمپرها کنترل میشوند. متاسفانه مقادیر قابل توجهی انرژی توسط این فنها و پمپها تلف میشوند. موتورهای بکار رفته در اغلب این ادوات از مقدار مورد نیاز بزرگتر بوده و سیستمهای مکانیکی تنظیم کننده جریان سیالات در آنها بسیار تلفاتی میباشند. به این عوامل باید هزینه های قابل توجه تعمیر و نگهداشت نیز اضافه شود. با توجه به اینکه هزینه های خرید پمپ معمولا کمتر از 5 درصد هزینه های بهره برداری آن در طول عمر سیستم پمپ است، کیفیت بهره برداری عامل مهمتری در تصمیم گیری برای انتخاب سیستمهای پمپ بشمار میرود.
شکل(9): مقایسه انرژی مصرفی کنترل فلو با شیر و درایو
انتخاب پمپ ها معمولا بر اساس حداکثر دبی مورد انتظار صورت میگیرد. در حالیکه اغلب اوقات هرگز فلوی ماکزیمم مورد استفاده قرار نمیگیرد. این امر منجر به بزرگ شدن پمپ ها شده و بدین ترتیب مقدمات کار برای اتلاف انرژی و استهلاک هر چه سریعتر سیستم های پمپ فراهم میشود. اگر یک پمپ در دور نامی خود کار کند و دبی خروجی پمپ به مصرف برسد سیستم در راندمان مطلوب خود کار خواهد کرد. اما اگر تنها 50 درصد دبی حداکثر مورد نیاز باشد چه اتفاقی خواهد افتاد؟ بدیهی است که در این حالت نیز موتور در دور نامی خود کار خواهد کرد و توان مصرفی اضافی توسط موتور تلف خواهد شد. از سوی دیگر برای کنترل دبی خروجی لازم خواهد بود از ادوات مقاومتی نظیر شیر خفه کن استفاده گردد. با استفاده از کنترل کننده های دور موتور میتوان جریان سیالات در پمپ ها را با اعمال تغییر دور موتور ، کنترل نمود. امروزه این روش بدلیل انعطاف پذیری و صرفه جوئی اقتصادی قابل توجه جایگزین روشهای سنتی متکی بر تنظیم جریان سیال با استفاده از شیرهای تنظیم کننده مکانیکی و دمپرها میشود. در شکل(9) تفاوت دو روش در میزان مصرف انرژی نشان داده شده است.
13- قوانین افینیتی در کاربردهای پمپ و فن
قوانین افینیتی در کاربردهای پمپ و فن های سانتریفوژ پایه نظری صرفه جوئی انرژی با استفاده از درایو هستند. بر طبق این قوانین و در یک پمپ یا فن سانتریفوژ، روابط زیر حاکم است:
Q ~ N فلو یا حجم : Q , سرعت : N
H ~ N2 هد یا فشار : H
P ~ N3 توان ورودی : P
با توجه به شکل(10) فلو/ ولوم بصورت خطی با دور پمپ/فن تغییر میکند. برای مثال اگر دور موتور نصف شود فلو نیز نصف خواهد شد. از طرف دیگر با توجه به منحنی وسط فشار یا هد متناسب با مربع دور تغییر میکند. در این حالت اگر دور موتور نصف شود، فشار یا هد چهار برابر کاهش پیدا کرده و به 25% خواهد رسید. منحنی سمت راست نشان میدهد که اگر دور موتور نصف شود مصرف توان 8 برابر کاهش پیدا کرده و به 12.5% خواهد رسید
شکل(10): نمایش تصویری قوانین افینیتی در کاربردهای پمپ و فن سانتریفوژ
به خاطر میسپاریم با استفاده از کنترل کننده های دور موتور و کاهش تنها 15 درصد دور میتوان به میزان 40 درصد در مصرف انرژی صرفه جوئی کرد. حال اجازه بدهید کمی دقیقتر به رفتار یک پمپ توجه کنیم. شکل(11) مشخصات یک سیستم پمپ را نشان میدهد. هد استاتیک عبارتست از اختلاف ارتفاع پمپ و تانک مقصد. بدیهی است که اگر یک پمپ نتواند به این ارتفاع غلبه کند دبی خروجی صفر خواهد بود. مولفه دوم هد اصطکاکی است . که در واقع بیانگر توان مورد نیاز جهت غلبه بر تلفات ناشی از عبور سیال از لوله ها، شیرها، زانوها و دیگر اجزای سیستم لوله کشی میباشد. این تلفات کلا وابسته به سرعت عبور سیال بوده و غیر خطی است. با اضافه کردن دو منحنی، منحنی سیستم بدست میاید.
در شکل(12) منحنی های سیستم و منحنی پمپ باهم نشان داده شده است. نقطه کار یک پمپ محل تلاقی منحنی پمپ و منحنی سیستم می باشد. با توجه به این منحنی ها روشن میشود که میزان فلو در این سیستم 800 لیتر در ثانیه و هد 60 متر میباشد. اگر بخواهیم نقطه کار را تغییر بدهیم لازم خواهد بود چیزی به سیستم اضافه نمائیم.
یک روش متداول در اینجا استفاده از شیر خفه کن است. در شکل(13) تاثیر عملکرد شیر خفه کن در نقطه کار پمپ را مشاهده میکنید. در واقع شیر اصطکاک مسیر سیال را افزایش داده و باعث افت فلو میگردد. با وجود اینکه با حضور شیر فلو به 600 لیتر در ثانیه کاهش پیدا کرده ولی در توان مصرفی سیستم تغییر محسوسی ایجاد نشده است. حال نگاهی دقیقتر به موضوع خواهیم داشت. همانطور که در شکل(14) مشاهده میکنید، برای دستیابی به فلوی مورد نظر از دو روش کنترل فلو با استفاده اشیر و کنترل با استفاده از درایو استفاده شده است . در روش کنترل فلو با شیر میزان توان مصرفی 0.875 درصد و در کنترل فلو با درایو توان مصرفی 0.42 درصد توان نامی میباشد. برای مثال اگر توان نامی پمپ 100KW باشد. تفاوت توان مصرفی دو روش برابر خواهد بود با:
(100KW x 0.875) – (100KW x 0.42) = 45.5KW
شکل(14) مقایسه توان مصرفی یک سیستم پمپ در دو حالت: الف) کنترل فلو با استفاده از شیر خفه کن (شکل سمت چپ) . ب) کنترل فلو با استفاده از درایو (شکل سمت راست).
شکل (15) - میزان مصرف انرژی در یک پمپ در پنج حالت : با استفاده از شیر برگشتی، با استفاده از شیر خفه کن، با قطع و وصل پمپ، با استفاده از کوپلینگ هیدرولیک، با استفاده از کنترل کننده دور موتور
هر چند که در سیستمهائی که هد استاتیک بالا ئی دارند با تغییر دور، راندمان پمپ هم به میزان زیادی تغییر میکند، ولی مزایای دیگر درایو استفاده از آن را بخوبی توجیه میکند. برای مثال میزان فشار هیدرولیک وارد شده به پره های پمپ سانتریفوژ با مجذور سرعت افزایش مییابد. این نیروها به بیرینگهای پمپ اعمال شده و عمر مفید آنها را کاهش خواهد داد. خاطر نشان میشود که عمر بیرینگها بطور معکوس با توان هفتم سرعت متناسب است. از سوی دیگر با کاهش دور نویز و نوسانات سیستم نیز کاهش پیدا میکند.

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله  53  صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید

 


دانلود با لینک مستقیم


دانلود مقاله ماشین سه فاز