فی بوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی بوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق درباره ژنراتور و عملکرد آن

اختصاصی از فی بوو تحقیق درباره ژنراتور و عملکرد آن دانلود با لینک مستقیم و پر سرعت .

تحقیق درباره ژنراتور و عملکرد آن


تحقیق درباره ژنراتور و عملکرد آن

فرمت فایل : word  (لینک دانلود پایین صفحه) تعداد صفحات 20 صفحه

 

 

 

 

مقدمه:

نتایج بررسی درباره ژنراتور ماشین جذبی با گرمایش مستقیم و با استفاده از گاز شهری برای جفت مبرد- جاذب آب- برومیدلیتیم در اینجا ارائه شده است. مدلی که در این نوشته توصیف شده است، جدا شدن آب به صورت بخار از محلول برومید لیتیم که روی یک لوله صاف افقی به سمت پایین حرکت می کند را در نظرگرفته است. در داخل لوله محصولات حاصل از احتراق گاز شهری به صورت جابه جایی اجباری در حرکت هستند. بخار شدن آب در مخلوط با در نظر گرفتن روابط جوشش هسته ای مدل شده است. نتیجه هایی که به دست آمده می تواند به عنوان خط مشی‌های طراحی برای ژنراتور ماشین جذبی به کار برده شود.

مرجعی که در مورد یک روش جامع برای طراحی ژنراتور های گرمایش مستقیم با استفاده از گاز شهری توضیح داده باشد، در دسترس نبود. لذا می بایست که طراحی ژنراتور مزبور را از دیدگاه تئوری و با مدلی ساده مطالعه کرد. البته در این بررسی به چگونگی استفاده از روش ارائه شده برای طرح های عملی نیز پرداخته شده و در پایان چند نمونه از ژنراتورهای جذبی که در مراجع مختلف به آنها اشاره شده ارائه می‌شوند.

2-6- مدل فیزیکی

برای حل مساله چند ساده سازی انجام شده است. هندسه معمول یک ژنراتور با گرمایش مستقیم می تواند به صورت دسته ای از لوله های غوطه ور در مخلوط آب- برومید لیتیم که گازهای احتراقی از داخل آنها می گذرد، یک مخزن به شکل استوانه افقی یا مکعب مستطیل که در مخلوط آب- برومید لیتیم غوطه ور است و گازهای احتراقی از داخلش می گذرند و یا استوانه ای عمودی که مشعل، آتش را به صورت مستقیم به سطح خارجی محفظه ژنراتور که شامل مخلوط رقیق آب- برومید لیتیم است می تاباند باشد.

اما بررسی این طرح ها همه به بررسی یک لوله صاف افقی با دمای ثابت که از سوی خارج در محلول آب- برومید لیتیم غوطه ور است و از داخل آن گازهای احتراقی می گذرند، منتهی می شود. جدایی بخار آب در سطح آزاد مخلوط اتفاق می افتد و گرما از طریق دیوار به مخلوط منتقل می شود.


دانلود با لینک مستقیم


تحقیق درباره ژنراتور و عملکرد آن

پروژه فانکشن ژنراتور کنترل شونده با میکرو کنترولر30صفحه

اختصاصی از فی بوو پروژه فانکشن ژنراتور کنترل شونده با میکرو کنترولر30صفحه دانلود با لینک مستقیم و پر سرعت .

پروژه فانکشن ژنراتور کنترل شونده با میکرو کنترولر

30صفحه

فهرست مطالب

عنوان                                                                                                 صفحه

      مقدمه………………………………………………………………………      3   

      چکیده مطالب.......................................................................................................   3

فصل اول

  - مشخصات و محدوده مدار...………………………………..………………………5

- خلاصه ای از مدار...................................................................................................  5

- ایجاد موج مثلثی و مربعی..........................................................................................  6

- محاسبات مدار....................................................................................................... 8-7

- موج سینوسی و محاسبه.........................................................................................12-9

- کنترل خروجی......................................................................................................... 12

فصل دوم

- میکرو کنترلر.................................................................................................... 16-13

- ساختار برنامه..........................................................................................................17

- فلوچارت برنامه..................................................................................................20-18

- برنامه میکرو..................................................................................................30-210

- نتیجه گیری............................................................................................................31

 

 

 

 

مقدمه

سیگنال ژنراتور( مولد پالس) وسیله ای  است برای تولید انواع موجهای سینوسی، مربّعی و مثلثی که معمولا در در آزمایشگاههای الکترونیکی به عنوان منبع سیگنال برای مدارهای الکترونیکی ازآن استفاده می کنند. با توجه به عنوان پروژه ،کنترل این مدار به وسیله یک میکروکنترولر که واسط بین کاربر و سیستم می باشد صورت میگیرد.

چکیده مطالب:

 در این پروژه از آی سی های مولد این سه پالس استفاده نشده است و میبایست مدار داخلی این آی سی ها شبیه سازی می شد. بدین منظوراز آمپ امپها برای تولید امواج مربعی و مثلثی و از یک مدارشامل مقاومت و دیودها برای تولید موج مثلثی استفاده شده است که کنترل دامنه و فرکانس و نوع موج بوسیله یک میکرو صورت میگیرد. در فصل اول مشخصات و خلاصه ای از مدار و قطعات استفاده شده و  نحوه و مدار مولد پالس مربعی ومثلثی و  پالس سینوسی و محاسبات مدار و نحوه کنترل مدار بوسیله میکرو مورد نظر آورده شده است و در فصل دوم فلوچارت برنامه و برنامه میکرو که به زبان C نوشته شده و نتیجه پروژه تهیه شده  ورده شده است و در و در آخر پروژه ،DATA SHEET  قطعات استفاده شده آورده شده است.


دانلود با لینک مستقیم


پروژه فانکشن ژنراتور کنترل شونده با میکرو کنترولر30صفحه

دانلود پاورپوینت دیزل ژنراتور - 24 اسلاید

اختصاصی از فی بوو دانلود پاورپوینت دیزل ژنراتور - 24 اسلاید دانلود با لینک مستقیم و پر سرعت .

دانلود پاورپوینت دیزل ژنراتور - 24 اسلاید


دانلود پاورپوینت دیزل ژنراتور - 24 اسلاید

 

 

 

 

 

lدیزل ژنراتورها به صورت محلی و در مقیاس کوچکتر مورد استفاده قرار می گیرند و از لحاظ کارکرد دو نوعند:
lPrime (دایم کار) : عدم استفاده از برق شبکه به دلایل اقتصادی
lEmergency (اضطراری) یا Standby (غیر دایم کار)

 ژنراتور اضطراری: هنگام قطع شبکه برق برای تامین برق موردنیاز تجهیزات و اماکنی که ممکن است بر اثر قطع برق خسارت مالی و جانی ایجاد شود

برای دانلود کل پاورپوینت از لینک زیر استفاده کنید:


دانلود با لینک مستقیم


دانلود پاورپوینت دیزل ژنراتور - 24 اسلاید

پروژه ارزیابی ژنراتور سوئیچ رلوکتانس برای استفاده از انرژی باد. doc

اختصاصی از فی بوو پروژه ارزیابی ژنراتور سوئیچ رلوکتانس برای استفاده از انرژی باد. doc دانلود با لینک مستقیم و پر سرعت .

پروژه ارزیابی ژنراتور سوئیچ رلوکتانس برای استفاده از انرژی باد. doc


پروژه ارزیابی ژنراتور سوئیچ رلوکتانس برای استفاده از انرژی باد. doc

 

 

 

 

 

نوع فایل: word

قابل ویرایش 160 صفحه

 

چکیده:

در این پایان نامه یک ژنراتور سوئیچ رلوکتانس kw 20 با سرعت نامی rpm 100 برای استفاده در مبدل های انرژی بادی تحریک مستقیم طراحی شده است. در انتخاب ساختار و طراحی این ژنراتور مسائل مربوط به نویز آکوستیک و لرزش اجزای مکانیکی در جهت بهبود سازگاری ژنراتور در تبدیل انرژی بادی مورد توجه قرار گرفته اند.

طراحی ژنراتور بگونه ای صورت گرفته است که در مد تحرک تک پالسه کارکند. با استفاده از یک مدل تحلیلی مشخصه های شار پیوندی در ژنراتور محاسبه شده و منحنی های مربوط به کارکرد الکتریکی ژنراتور شبیه سازی شده اند. با تعیین مدل شار در قسمت های مختلف ژنراتور تلفات آهنی در هر یک از این قسمت ها محاسبه می شود.

تلفات مسی و تلفات هدایتی مدار الکترونیک قدرت نیز با استفاده از شکل موج جریان فاز تعیین می گردد. سپس بازده ژنراتور محاسبه و بهینه سازی طرح با استفاده از بازده و با روش سعی و خطا انجام می شود.

 

مقدمه:

1-2-1) توان تولیدی توسط توربین بادی

گشتاور تولیدی در پره¬های توربین بادی تابعی از پروفایل پره، سرعت چرخشی، زاویه گام و شعاع پره¬ها به صورت زیر است [1]:

(1-1)  R3V2 (β، λ p Ct( π Tm = 1/2

که در آن V سرعت باد در میان پره¬ها، (β، λ)Ct ضریب گشتاور، β زاویه گام، R شعاع توربین بادی و ρ چگالی هوا می¬باشد (به طور نمونه در حدود 3 kg/m5/ 1). عبارت λ ضریب (β، λ)Ct را به سرعت باد و سرعت چرخشی وابسته می¬سازد، که نسبت سرعت قله¬ای نامیده شده و به صورت زیر تعیین می¬شود:

(1-2) = ωR/V λ

که در آن ω سرعت چرخشی توربین بادی است. مقدار ضریب گشتاور (β، λ)Ct، توابعی غیر خطی از β و  λ است و به مشخصه¬های آیرودینامیکی پروفایل پره بستگی دارد. شکل (1-1) یک منحنی نمونه از (β، λ)Ct را ارائه می¬دهد [2]. دقت شود (β، λ)Ct تابعی از پروفایل پره و مستقل از شعاع است.

 

فهرست مطالب:

1) مقدمه و مروری بر سیستم های ژنراتوری توربین بادی

1-2-1) توان تولیدی توسط توربین بادی

1-2-2) جعبه دنده و اینرسی توربین های بادی

1-2-3) عملکرد سرعت ثابت توربین های بادی

1-2-3-1) ژنراتورهای القایی

1-2-3-2) ژنراتورهای سنکرون

1-2-4) عملکرد سرعت متغیر توربین های بادی

1-2-4-1)‌ ژنراتور سنکرون

1-2-4-2) ژنراتور القایی قفس سنجابی

1-2-3-4) ژنراتور القایی روتور سیم پیچی شده

1-2-4-4) ژنراتور آهنربای دائم سنکرون

1-2-4-5) ژنراتور سوئیچ رلوکتانس

2) ماشین سوئیچ رلوکتانس و تئوری عملکرد آن

2-1) مقدمه

2-2) دید کلی در مورد ماشین سوئیچ رلوکتانس

2-2-1) سیستم ژنراتور سوئی رلوکتانس

2-2-1-1)‌ژنراتور سوئیچ رلوکتانس

2-2-1-2) آشکار ساز موقعیت رتور

2-2-1-3) مبدل قدرت ژنراتور سوئیچ رلوکتانس

2-2-1-4) مبدل قدرت ژنراتور سوئیچ رلوکتانس

2-2-1-4) کنترل کننده

2-2-2) مزایای ماشین سوئیچ رلوکتانس

2-2-3) معایب ماشین سوئیچ رلوکتانس

2-2-4) ژنراتور سوئیچ رلوکتانس و دیگر ژنراتورهای بکاررفته برای تبدیل انرژی باد

2-3) تئوری عملکرد ماشین سوئیچ رلوکتانس

2-3-1) منحنی های مغناطیسی

2-3-2) شکل موج های جریان فاز و کنترل گشتاور

2-3-3) محاسبه گشتاور

2-3-4) شکل موج جریان خازن الکترولیتی

3) تلفات در ژنراتور سوئیچ رلوکتانس

3-1) مقدمه

3-2) محاسبه تلفات

3-2-1) محاسبه تلفات آهنی هسته

3-2-1-1) روش محاسبه تلفات آهنی هسته

3-2-1-2) شکل موج هار شار هسته و محاسبه تلفات آهنی

3-2-2) تلفات مسی سیم پیچ ها

3-2-3) تلفات الکترونیک قدرت

3-2-4) محاسبه تلفات کل و بازده

4) کنترل ژنراتور سوئیچ رلوکتانس

4-1) مقدمه

4-2) مدهای کنترل ژنراتور سوئیچ رلوکتانس

4-2-1) کنترل تک پالسه

4-2-2) کنترل ولتاژ- PWM برشگری نرم

4-2-2) کنترل جریان- برشگری سخت

4-2-4) کنترل جریان- برشگری نرم

4-3) تحریک بهینه ژنراتور سوئیچ رلوکتانس

4-3-1) نگاشت مشخصه های ژنراتور سوئیچ رلوکتانس

4-3-2) انتخاب بهینه زوایای تحریک

5) مدلسازی تحلیلی شار پیوندی در ماشین سوئیچ رلوکتانس

5-1) مقدمه

5-2) مدل تحلیلی انتخاب شده

5-2-1) محاسبه تحلیلی اندوکتانس ماشین در حالت ناهمپوشانی قطب ها

5-2-1-1) سهم روتور در اندوکتانس حالت ناهمپوشانی

5-2-1-2) سهم استاتور در اندوکتانس حالت ناهمپوشانی

5-2-1-3) اندوکتانس مربوط به دورهای انتهایی سیم پیچ

5-2-1-3) اندوکتانس مربوط به دورهای انتهایی سیم پیچ

5-2-2) شار پیوندی با یک فاز در حالت همپوشانی قطب ها

5-2-3) مشخصه های شار پیوندی فاز ژنراتور طراحی شده

6) شبیه سازی ژنراتور سوئیچ رلوکتانس 8/12

6-1) بلوک شبیه سازی کل سیستم

6-2) بلوک شبیه سازی سیستم قدرت

6-2-1) بلوک شبیه سازی فاز

6-3) بلوک کنترل شبیه سازی فاز

6-3-1)‌بلوک شبیه سازی کنترل کننده مد تک پالسه

6-3-2) بلوک شبیه سازی کنترل کننده ولتاژ PWM برشگری نرم

6-3-3) بلوک شبیه سازی کنترل کننده جریان مد برشگری نژسخت

6-3-4) بلوک شبیه سازی کنترل کننده جریان مد برشگری نرم

6-4) بلوک اندازه گیری متغیرها و محاسبه تلفات جریانی

6-5) بلوک شبیه سازی شکل موج های شار و محاسبه تلفات آهنی

6-5-1) بلوک شبیه سازی شکل موج شار قطب روتور

6-5-2) بلوک شبیه سازی شکل موج شار طوقه روتور

6-5-3) بلوک مشتق گیر شار

6-5-4) بلوک شبیه سازی چگالی تلفات

6-5-4-1) بلوک شبیه سازی فرکانس معادل و دامنه تغییرات شکل موج شار

6-5-4-1-1) بلوک شبیه سازی دامنه شکل موج شار

6-5-4-1-2) بلوک شبیه سازی نمو شار و زمان

6-5-4-1-3) بلوک شبیه سازی چگالی انرژی

7) انتخاب پیکربندی و طراحی ژنراتور سوئیچ رلوکتانس

7-1)‌طراحی ژنراتور سوئیچ رلوکتانس

7-1-1) انتخاب تعداد فازها و قطب ها استاتور و روتور

7-1-2) انتخاب قطر و طول محور روتور

7-1-3) انتخاب قطر استاتور و طول کلی ماشین

7-1-4) انتخاب طول شکاف هوایی

7-1-5) انتخاب کمان های قطب استاتور و روتور

7-1-6) انتخاب عمق شیار روتور

7-1-7) انتخاب ضخامت طوقه روتور

7-1-8) انتخاب قطر محور 

7-1-9) انتخاب ضخامت طوقه استاتور

7-1-10) انتخاب عمق شیار استاتور

7-1-11) انتخاب تعداد دور سیم پیچ های قطب استاتور

7-1-12) انتخاب سطح مقطع و چگالی جریان سیم پیچ های قطب استاتور

7-2) فلوچارت طراحی

7-3) ملاحظات نویز در طراحی ژنراتور سوئیچ رلوکتانس

7-3-1) حذف نویز با روش کموتاسیون دو مرحله ای

7-3-2) حذف نویز با طراحی ابعاد

7-4) مشخصات و عملکرد ژنراتور طراحی شده

نتیجه گیری

پیشنهاد

مراجع

ضمیمه الف

ضمیمه ب

ب-1) ترانزیستور IGBT

ب-2) دیود قدرت بازیافت سریع

فهرست جداول:

جدول 7-1) داده های ابعاد ژنراتورهای سه فاز

جدول 7-2) داده های عملکرد ژنراتورهای سه فاز

جدول 7-3) داده های ابعاد ژنراتورهای سه فاز

جدول 7-3) داده های ابعاد ژنراتورهای سه فاز

جدول 7-4) داده های عملکرد ژنراتورهای سه فاز

جدول 7-5) ترکیب های تعداد قطب استاتور بر رتور معتبر

جدول 7-6) مقادیر نوعی K, TRV وσ

جدول 7-7- مقادیر نوعی برای نسبت قطر روتور به استاتور و کمان های قطب

 جدول 7-8- مشخصات ژنراتور سوئیچ رلکوتانس 8/12 طراحی شده

جدول ب-1- مشخصات حداکثر در درجه حرارت محیط 25 درجه

جدول ب-2- اندازه ها و مشخصات اصلی دیودهای قدرت

 

فهرست اشکال:

شکل 1-1- مشخصه c1(λ,β) یک پروفایل پره نوعی

شکل 1-2- مشخصه ضریب توان پروفایل پره نوعی

شکل 1-3- مشخصه توان منحنی Cp-λ پهن

شکل 1-4- مشخصه توان منحنی Cp-λ باریک

شکل 1-5- عملکرد در نسبت سرعت قله ای بهینه

شکل 1-6- ژنراتور سنکرون سرعت متغیر- دو مبدل پشت به پشت

شکل 1-7- ژنراتور سنکرون سرعت متغیر- کنترل جریان میدان

شکل 1-8- ژنراتور القائی- تحریک خازنی

شکل 1-9- ژنراتور القائی- دو مبدل پشت به پشت

شکل 1-10- ژنراتور القائی روتور سیم پیچی شده

شکل 2-1- مقطع ماشین سوئیچ رلوکتانس 6/8

شکل 2-2- بلوک دیاگرام سیستم ژنراتور سوئیچ رلوکتانس

شکل 2-3- مبدل قدرت نیم پل نامتقارن

شکل 2-4- قطب های استاتور و روتور هم خطی و ناهم خطی

شکل 2-5- منحنی های مغناطیسی

شکل 2-6- شکل موج جریان در سرعت زیاد و حالت موتوری

شکل 2-7- شکل موج جریان در سرعت زیاد و حالت ژنراتوری

شکل 2-8- شکل موج جریانت نوعی در سرعت کم

شکل 2-9- تبدیل انرژی

شکل 2-10- مسیرهای تحریک برای دو مد تک پالسه و برشی

شکل 2-11- مشخصه گشتاور نوعی

شکل 2-12- شکل موج جریان سیم پیچ در Kw2 و rpm 750

شکل 2-13- شکل موج جریان سیم پیچ در Kw2 و rpm 2000

شکل 2-14- شکل موج جریان خازن الکترولیتی

شکل 3-1- مشخصه های شار پیوندی ژنراتور نمونه 6/8

شکل 3-2- شکل موج های شار در قسمت های مختلف مدار مغناطیسی

شکل 3-3- چگالی توان تلفاتی در قسمت های مختلف هسته

شکل 3-4- تلفات آهنی در قسمت های مختلف ژنراتور نمونه

شکل 3-5- تلفات آهنی کل بر حسب زاویه هدایت

شکل 3-6- شکل موج های جریان فاز ژنراتور بر حسب زاویه هدایت

شکل 3-7- جریان موثر فاز بر حسب زاویه هدایت

شکل 3-8- تلفات مسی بر حسب زاویه هدایت

شکل 3-9- تلفات الکترونیک قدرت بر حسب زاویه هدایت

شکل 3-10- تلفات متوسط کل بر حسب جریان موثر فاز

شکل 3-11- توان متسوط خروجی بر حسب زاویه هدایت

شکل 3-12- بازده بر حسب زاویه هدایت

شکل 4-1- سیستم کنترل نوعی ژنراتور

شکل 4-2- حالت هدایت در یک فاز

شکل 4-3- شکل موج های عملکرد تک پالسه

شکل 4-4- شکل موج های PWM- برشگری نرم

شکل 4-5- شکل موج های تنظیم جریان- برشگری سخت

شکل 4-6- شکل موج های تنظیم جریان- برشگری نرم

شکل 4-7- نگاشت توان خروجی ژنراتور

شکل 4-8- نگاشت جریان موثر فاز ژنراتور

شکل 4-9- نگاشت تلفات ژنراتور

شکل 4-10- توان متوسط خروجی ژنراتور برحسب زاویه روشن شدن

شکل 4-11- توان متوسط خروجی ژنراتور برحسب زاویه هدایت

شکل 4-12- تمام نقاط کاری ممکن برای جریان موثر فاز

شکل 4-13- تمام نقاط کاری ممکن برای تلفات

شکل 4-14- نقاط انتخابی بر اساس حداقل جریان موثر فاز

شکل 4-15- نقاط انتخابی بر اساس حداقل تلفات در ژنراتور

شکل 4-16- زوایای روشن شدن بهینه بر حسب توان متوسط خروجی

شکل 4-17- زوایای هدایت بهینه بر حسب توان متوسط خروجی

شکل 5-1- مقایسه شار پیوندی روش المان محدود و تحلیل برای ماشین 8/12

شکل 5-2- وضعیت ناهمپوشانی با فرض مستطیل بودن شکل قطب ها

شکل 5-3- وضعیت ناهمپوشانی برای حل میدان در شیار استاتور

شکل 5-4- مسیرهای بسته آمپری برای محاسبه شدت میدان مغناطیسی

شکل5-5- مدل ساده شده برای محاسبه فلوی پیوندی فاز در حالت هم پوشانی قطب ها

شکل 5-6- مشخصه شار پیوندی فاز ژنراتور طراحی شده

شکل 6-1- شبیه سازی ژنراتور سوئیچ رلوکتانس سه فاز 8/12

شکل 6-2- بلوک شبیه سازی سیستم قدرت

شکل 6-3- بلوک شبیه سازی یک فاز ژنراتور

شکل 6-4-بلوک شبیه سازی کنترل کننده مد تک پالسه

شکل 6-5- بلوک شبیه سازی کنترل کننده مد PWM نرم

شکل 6-6- بلوک شبیه سازی کنترل کننده جریان مد برشگری سخت

شکل 6-7- بلوک شبیه سازی کنترل کننده جریان مد برشگری نرم

شکل 6-8- بلوک اندازه گیری متغیرها و محاسبه تلفات جریانی

شکل 6-9- بلوک شبیه سازی شکل موج های شار و محاسبه تلفات آهنی

شکل 6-10- بلوک شبیه سازی شکل موج های شار قطب روتور

شکل 6-11- بلوک شبیه سازی شکل موج های شار طوقه روتور

شکل 6-12- بلوک مشتق گیر شار

شکل 6-13- بلوک شبیه سازی چگالی تلفات

شکل 6-14- بلوک شبیه سازی فرکانس معادل شکل موج شار

شکل 6-15- بلوک شبیه سازی دامنه شکل موج شار

شکل 6-16- بلوک شبیه سازی نمو شار و زمان

شکل 6-17- بلوک شبیه سازی چگالی انرژی

شکل 7-1- گشتاور بر واحد وزن طراحی های مختلف

شکل 7-2- حداکثر VA مورد نیاز کنترل کننده

شکل 7-3- ماشین سوئیچ رلوکتانس سه فاز 8/6

شکل 7-4- ماشین سوئیچ رلوکتانس سه فاز 8/12

شکل 7-5- ماشین سوئیچ رلوکتانس چهار فاز 6/8

شکل 7-6- مقطع یک ماشین نمونه با Lstk/Dr=1

شکل 7--7- مثلث شدنی

شکل 7-8- فلوچارت طراحی ژنراتور سوئیچ رلوکتانس

 شکل 7-9- شکل موج های جریان، نیروی شعاعی و شتاب گیری شعاعی استاتور

 شکل 7-10- حذف لرزش با روش کموتاسیون دو مرحله ای

شکل 7-11- پارامترهای ابعاد استاتور

شکل 7-12- مقطع ماشین های اولیه و پیشنهادی

شکل 7-13- ساختارهای مختلف برای طوقه استاتور

شکل 7-14- شکل های مختلف برای قطب استاتور

شکل 7-15- مقطع ژنراتور 8/12 طراحی شده

شکل 7-16- زوایای تحریک

شکل 7-17- توان خروجی ژنراتور برحسب سرعت و زوایای تحریک انتخاب شده

شکل 7-18- بازده ژنراتور برحسب سرعت و زوایای تحریک انتخاب شده

شکل ب-1- نمای IGBT

شکل ب- 2- مشخصه خروجی ترانزیستور

شکل ب-3- نحوه کدگذاری دیودها

شکل ب-4- مشخصه افت ولتاژ مستقیم دیود

 

منابع و مآخذ:

منابع به صورت فایل عکس درون فایل موجود است


دانلود با لینک مستقیم


پروژه ارزیابی ژنراتور سوئیچ رلوکتانس برای استفاده از انرژی باد. doc

دانلود تحقیق کامل درمورد سیر تکاملی ژنراتورهای سنکرون

اختصاصی از فی بوو دانلود تحقیق کامل درمورد سیر تکاملی ژنراتورهای سنکرون دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق کامل درمورد سیر تکاملی ژنراتورهای سنکرون


دانلود تحقیق کامل درمورد سیر تکاملی ژنراتورهای سنکرون

لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه: 19

 

سیر تکاملی ژنراتورهای سنکرون

سیر تکاملی ژنراتورهای سنکرون(از ابتدا تا پایان دهه 1980)

هدف از انجام این تحقیق بررسی سیر تحقیقات انجام شده با موضوع طراحی ژنراتور سنکرون است. به این منظور، بررسی مقالات منتشر شده IEEE که با این موضوع مرتبط بودند، در دستور کار قرار گرفت. به عنوان اولین قدم کلیه مقالات مرتبط در دهه‌های مختلف جستجو و بر مبنای آنها یک تقسیم‌بندی موضوعی انجام شد. سپس سعی شد بدون پرداختن به جزییات، سیرتحولات استخراج‌ شود. رویکرد کلی این بوده است که تحولات دارای کاربرد صنعتی بررسی شود.

با توجه به گستردگی موضوع و حجم مطالب، این گزارش در دو بخش ارایه شده است. در بخش اول ابتدا پیشرفتهای اولیه ژنراتورهای سنکرون از آغاز تا دهه 1970 بررسی شده است و در ادامه تحولات دهه‌های 1970 و 1980 به تفصیل مورد توجه قرار گرفته‌اند. در پایان هر دهه یک جمعبندی از کل فعالیتهای صورت گرفته ارایه و سعی شده است ارتباط منطقی پیشرفتهای هر دهه با دهه‌های قبل و بعد بیان شود.

ماشین سنکرون همواره یکی از مهمترین عناصر شبکه قدرت بوده و نقش کلیدی در تولید انرژی الکتریکی و کاربردهای خاص دیگر ایفاء کرده است.

ساخت اولین نمونه ژنراتور سنکرون به انتهای قرن 19 برمی‌گردد. مهمترین پیشرفت انجام شده در آن سالها احداث اولین خط بلند انتقال سه فاز از لافن به فرانکفورت آلمان بود. درکانون این تحول؛ یک هیدروژنراتور سه فاز 210 کیلووات قرار گرفته بود.

علیرغم مشکلات موجود در جهت افزایش ظرفیت وسطح ولتاژ ژنراتورها، در طول سالهای بعد تلاشهای گسترده‌ای برای نیل به این مقصود صورت گرفت.

مهمترین محدودیتها در جهت افزایش ظرفیت، ضعف عملکرد سیستمهای عایقی و نیز روشهای خنک‌سازی بود. در راستای رفع این محدودیتها ترکیبات مختلف عایقهای مصنوعی، استفاده از هیدروژن برای خنک‌سازی و بهینه‌سازی روشهای خنک‌سازی با هوا نتایج موفقیت‌آمیزی را در پی داشت به نحوی که امروزه ظرفیت ژنراتورها به بیش از MVA1600 افزایش یافته است.

در جهت افزایش ولتاژ، ابداع پاورفرمر در انتهای قرن بیستم توانست سقف ولتاژ تولیدی را تا حدود سطح ولتاژ انتقال افزایش دهد به نحوی که برخی محققان معتقدند در سالهای نه چندان دور، دیگر نیازی به استفاده از ترانسفورماتورهای افزاینده نیروگاهی نیست.

همچنین امروزه تکنولوژی ژنراتورهای ابررسانا بسیار مورد توجه است. انتظار می‌رود با گسترش این تکنولوژی در ژنراتورهای آینده، ظرفیتهای بالاتر در حجم کمتر قابل دسترسی باشند.

تاریخچه

ژنراتور سنکرون تاریخچه‌ای بیش از صد سال دارد. اولین تحولات ژنراتور سنکرون در دهه 1880 رخ داد. در نمونه‌های اولیه مانند ماشین جریان مستقیم، روی آرمیچر گردان یک یا دو جفت سیم‌پیچ وجود داشت که انتهای آنها به حلقه‌های لغزان متصل می‌شد و قطبهای ثابت روی استاتور، میدان تحریک را تامین می‌کردند. به این طرح اصطلاحاً قطب خارجی می‌گفتند. در سالهای بعد نمونه دیگری که در آن محل قرار گرفتن میدان و آرمیچر جابجا شده بود مورد توجه قرار گرفت. این نمونه که شکل اولیه ژنراتور سنکرون بود، تحت عنوان ژنراتور قطب داخلی شناخته و جایگاه مناسبی در صنعت‌برق پیدا کرد. شکلهای مختلفی از قطبهای مغناطیسی و سیم‌پیچهای میدان روی رتور استفاده شد، در حالی که سیم‌پیچی استاتور، تکفاز یا سه‌فاز بود. محققان بزودی دریافتند که حالت بهینه از ترکیب سه جریان متناوب با اختلاف فاز نسبت به هم بدست می‌آید. استاتور از سه جفت سیم‌پیچ تشکیل شده بود که در یک طرف به نقطه اتصال ستاره و در طرف دیگر به خط انتقال متصل بودند.

در واقع ایده ماشین جریان متناوب سه فاز، مرهون تلاشهای دانشمندان برجسته‌ای مانند نیکولا تسلا، گالیلئو فراریس، چارلز برادلی، دبروولسکی، هاسلواندر بود.

هاسلواندر اولین ژنراتور سنکرون سه فاز را در سال 1887 ساخت که توانی در حدود 8/2 کیلووات را در سرعت 960 دور بر دقیقه (فرکانس 32 هرتز) تولید می‌کرد. این ماشین دارای آرمیچر سه فاز ثابت و رتور سیم‌پیچی شده چهار قطبی بود که میدان تحریک لازم را تامین می‌کرد. این ژنراتور برای تامین بارهای محلی مورد استفاده قرار می‌گرفت.

در سال 1891 برای اولین بار ترکیب ژنراتور و خط بلند انتقال به منظور تامین بارهای دوردست با موفقیت تست شد. انرژی الکتریکی تولیدی این ژنراتور توسط یک خط انتقال سه فاز از لافن به نمایشگاه بین‌المللی فرانکفورت در فاصله 175 کیلومتری منتقل می‌شد. ولتاژ فاز به فاز 95 ولت، جریان فاز 1400 آمپر و فرکانس نامی 40 هرتز بود. رتور این ژنراتور که برای سرعت 150 دور بر دقیقه طراحی شده بود، 32 قطب داشت. قطر آن 1752 میلیمتر و طول موثر آن 380 میلیمتر بود. جریان تحریک توسط یک ماشین جریان مستقیم تامین می‌شد. استاتور آن 96 شیار داشت که در هر شیار یک میله مسی به قطر 29 میلیمتر قرار می‌گرفت. از آنجا که اثر پوستی تا آن زمان شناخته نشده بود، سیم‌پیچی استاتور متشکل از یک میله برای هر قطب / فاز بود. بازده این ژنراتور 5/96% بود که در مقایسه با تکنولوژی آن زمان بسیار عالی می‌نمود. طراحی و ساخت این ژنراتور را چارلز براون انجام داد.

در آغاز، اکثر ژنراتورهای سنکرون برای اتصال به توربینهای آبی طراحی می‌شدند، اما بعد از ساخت توربینهای بخار قدرتمند، نیاز به توربوژنراتورهای سازگار با سرعت بالا احساس شد. در پاسخ به این نیاز اولین توربورتور در یکی از زمینه‌های مهم در بحث ژنراتورهای سنکرن، سیستم عایقی است. مواد عایقی اولیه مورد استفاده مواد طبیعی مانند فیبرها، سلولز، ابریشم، کتان، پشم و دیگر الیاف طبیعی بودند. همچنین رزینهای طبیعی بدست آمده از گیاهان و ترکیبات نفت خام برای ساخت مواد عایقی مورد استفاده قرارمی‌گرفتند. در سال 1908 تحقیقات روی عایقهای مصنوعی توسط دکتر بایکلند آغاز شد. در طول جنگ جهانی اولی رزین‌های آسفالتی که بیتومن نامیده می‌شدند، برای اولین بار همراه با قطعات میکا جهت عایق شیار در سیم‌پیچهای استاتور توربوژنراتورها مورد استفاده قرار گرفتند. این قطعات در هر دو طرف، با کاغذ سلولز مرغوب احاطه می‌شدند. در این روش سیم‌پیچهای استاتور ابتدا با نوارهای سلولز و سپس با دو لایه نوار کتان پوشیده می‌شدند. سیم‌پیچها در محفظه‌ای حرارت می‌دیدند و سپس تحت خلا قرار می‌گرفتند. بعد از چند ساعت عایق خشک و متخلخل حاصل می‌شد. سپس تحت خلا، حجم زیادی از قیر داغ روی سیم‌پیچ‌ها ریخته می‌شد. در ادامه محفظه با گاز نیتروژن خشک با فشار 550 کیلو پاسکال پر و پس از چند ساعت گاز نیتروژن تخلیه و سیم‌پیچها در دمای محیط خنک و سفت می‌شدند. این فرآیند وی پی‌آی نامیده می‌شد.

در اواخر دهه 1940 کمپانی جنرال الکتریک به منظور بهبود سیستم عایق سیم‌پیچی استاتور ترکیبات اپوکسی را برگزید. در نتیجه این تحقیقات، یک سیستم به اصطلاح رزین ریچ عرضه شد که در آن رزین در نوارها و یا وارنیش مورد استفاده بین لایه‌ها قرار می‌گرفت.

در دهه‌های 1940 تا 1960 همراه با افزایش ظرفیت ژنراتورها و در نتیجه افزایش استرسهای حرارتی، تعداد خطاهای عایقی به طرز چشمگیری افزایش یافت. پس از بررسی مشخص شد علت اکثر این خطاها بروز پدیده جدا شدن نوار یا ترک خوردن آن است. این پدیده به علت انبساط و انقباض ناهماهنگ هادی مسی و هسته آهنی به وجود می‌آمد. برای حل این مشکل بعد از جنگ جهانی دوم محققان شرکت وستینگهاوس کار آزمایشگاهی را بر روی پلی‌استرهای جدید آغاز کرده و سیستمی با نام تجاری ترمالاستیک عرضه کردند.

نسل بعدی عایقها که در نیمه اول دهه 1950 مورد استفاده قرار گرفتند، کاغذهای فایبرگلاس بودند. در ادامه در سال 1955 یک نوع عایق مقاوم در برابر تخلیه جزیی از ترکیب 50 درصد رشته‌های فایبرگلاس و 50 درصد رشته‌های PET بدست آمد که روی هادی پوشانده می‌شد و سپس با حرارت دادن در کوره‌های مخصوص، PET ذوب شده و روی فایبرگلاس را می‌پوشاند. این عایق بسته به نیاز به صورت یک یا چند لایه مورد استفاده قرار می‌گرفت. عایق مذکور با نام عمومی پلی‌گلاس و نام تجاری داگلاس وارد بازار شد.

مهمترین استرسهای وارد بر عایق استرسهای حرارتی است. بنابراین سیستم‌های عایقی همواره در ارتباط تنگاتنگ با سیستم‌های خنک‌سازی بوده‌اند. خنک‌سازی در ژنراتورهای اولیه توسط هوا انجام می‌گرفت. بهترین نتیجه بدست آمده با این روش خنک‌سازی یک ژنراتور MVA200 با سرعت rpm1800 بود که در سال 1932 در منطقه بروکلین نیویورک نصب شد. اما با افزایش ظرفیت

ژنراتورها نیاز به سیستم خنک‌سازی موثرتری احساس شد. ایده خنک‌سازی با هیدروژن اولین بار در سال 1915 توسط ماکس شولر مطرح شد. تلاش او برای ساخت چنین سیستمی از 1928 آغاز و در سال 1936 با ساخت اولین نمونه با سرعت rpm3600 به نتیجه رسید. در سال 1937 جنرال الکتریک اولین توربوژنراتور تجاری خنک شونده با هیدروژن را روانه بازار کرد. این تکنولوژی در اروپا بعد از سال 1945 رایج شد. در دهه‌های 1950 و 1960 روشهای مختلف خنک‌سازی مستقیم مانند خنک‌سازی سیم‌پیچ استاتور با گاز، روغن و آب پا به عرصه ظهور گذاشتند تا آنجا که در اواسط دهه 1960 اغلب ژنراتورهای بزرگ با آب خنک می‌شدند. ظهور تکنولوژی خنک‌سازی مستقیم موجب افزایش ظرفیت ژنراتورها به میزان MVA1500 شد.

یکی از تحولات برجسته‌ای که در دهه 1960 به وقوع پیوست تولید اولین ماده ابررسانای تجاری یعنی نیوبیوم- تیتانیوم بود که در دهه‌های بعدی بسیار مورد توجه قرار گرفت.

 

 

تحولات دهه 1970

در این دهه تحول مهمی در فرآیند عایق کاری ژنراتور رخ داد. قبل از سال 1975 اغلب عایقها را توسط رزینهای محلول در ترکیبات آلی فرار اشباع می‌کردند. در این فرآیند، ترکیبات مذکور تبخیر و در جو منتشر می‌شد. با توجه به وضع قوانین زیست محیطی و آغاز نهضت سبز در اوایل دهه 1970، محدودیتهای شدیدی بر میزان انتشار این مواد اعمال شد که حذف آنها را از این فرآیند در پی داشت. در نتیجه استفاده از مواد سازگار با محیط زیست در تولید و تعمیر ماشینهای الکتریکی مورد توجه قرار گرفت. استفاده از رزینهای با پایه آبی یکی از اولین پیشنهاداتی بود که مطرح شد، اما یک راه‌حل جامعتر که امروزه نیز مرسوم است، کاربرد چسبهای جامد بود. در همین راستا تولید نوارهای میکای رزین ریچ بدون حلال نیز توسعه یافت.

از دیگر پیشرفتهای مهم این دهه ظهور ژنراتورهای ابررسانا بود. یک ماشین ابررسانا عموماً‌از یک سیم‌پیچ میدان ابررسانا و یک سیم‌پیچ آرمیچر مسی تشکیل شده است. هسته رتور عموماً آهنی نیست، چرا که آهن به دلیل شدت بالای میدان تولیدی توسط سیم‌پیچی میدان اشباع می‌شود. فقط در یوغ استاتور از آهن مغناطیسی استفاده می‌شود تا به عنوان شیلد و همچنین منتقل کننده شار بین قطبها عمل کند. عدم استفاده از آهن، موجب کاهش راکتانس سنکرون (به حدود pu5/0- 3/0) در این ماشینها شده که طبعاً موجب پایداری دینامیکی بهتر می‌شود. همانطور که اشاره شد، اولین ماده ابررسانای تجاری نیوبیوم- تیتانیوم بود که تا دمای 5 درجه کلوین خاصیت ابررسانایی داشت. البته در دهه‌های بعد پیشرفت این صنعت به معرفی مواد ابررسانایی با دمای عملکرد 110 درجه کلوین انجامید. براین اساس مواد ابررسانا را به دو گروه دما پایین مانند نیوبیوم – تیتانیوم و دما بالا مانند BSCCO-2223 تقسیم می‌کنند. از اوایل دهه 1970 تحقیقات بر روی ژنراتورهای ابررسانا با استفاده از هادیهای دما پایین آغاز شد. در این دهه کمپانی وستینگهاوس تحقیقات برای ساخت یک نمونه دوقطبی را با استفاده هادیهای دماپایین آغاز کرد. نتیجه این پروژه ساخت و تست یک ژنراتور MVA5 در سال 1972 بود.

این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید


دانلود با لینک مستقیم


دانلود تحقیق کامل درمورد سیر تکاملی ژنراتورهای سنکرون