فی بوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی بوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود دینامیک سیالات در توربو ماشین ها

اختصاصی از فی بوو دانلود دینامیک سیالات در توربو ماشین ها دانلود با لینک مستقیم و پر سرعت .

دانلود دینامیک سیالات در توربو ماشین ها


دانلود دینامیک سیالات در توربو ماشین ها

دسته بندی : فنی و مهندسی_ مکانیک ، تحقیق

فرمت فایل:  Image result for word ( قابلیت ویرایش و آماده چاپ

حجم فایل:  (در قسمت پایین صفحه درج شده )

فروشگاه کتاب : مرجع فایل 

 


 قسمتی از محتوای متن ...

بخش اول دینامیک سیالات در توربو ماشین ها مقدمه: در طراحی کنونی توربو ماشینها، و بخصوص برای کاربردهای مربوط به موتورهای هواپیما، تاکید اساسی بر روی بهبود راندمان موتور صورت گرفته است.
شاید بارزترین مثال برای این مورد، «برنامه تکنولوژی موتورهای توربینی پر بازده مجتمع» (IHPTET) باشد که توسط NASA و DOD حمایت مالی شده است.
هدف IHPTET، رسیدن به افزایش بازده دو برابر برای موتورهای توربینی پیشرفته نظامی، در آغاز قرن بیست و یکم می باشد.
بر حسب کاربرد، این افزایش بازده از راههای مختلفی شامل افزایش نیروی محوری به وزن، افزایش توان به وزن و کاهش معرف ویژه سوخت (SFC) بدست خواهد آمد.
وقتی که اهداف IHPTET نهایت پیشرفت در کارآیی را ارائه می دهد، طبیعت بسیار رقابتی فضای کاری کنونی، افزایش بازده را برای تمام محصولات توربو ماشینی جدید طلب می کند.
به خصوص با قیمتهای سوخت که بخش بزرگی از هزینه های مستقیم بهره برداری خطوط هوایی را به خود اختصاص داده است، SFC، یک فاکتور کارایی مهم برای موتورهای هواپیمایی تجاری می باشد.
اهداف مربوط به کارایی کلی موتور، مستقیما به ملزومات مربوط به بازده آیرودینامیکی مخصوص اجزاء منفرد توربو ماشین تعمیم می یابد.
در راستای رسیدن به اهداف مورد نیازی که توسط IHPTET و بازار رقابتی به طور کلی آنها را تنظیم کرده اند، اجزای توربو ماشینها باید به گونه ای طراحی شوند که پاسخگوی نیازهای مربوط به افزایش بازده، افزایش کار به ازای هر طبقه، افزایش نسبت فشار به ازای هر طبقه، و افزایش دمای کاری، باشند.
بهبودهای چشمگیری که در کارایی حاصل خواهد شد، نتیجه ای از بکار بردن اجزایی است که دارای خواص آیرودینامیکی پیشرفته ای هستند.
این اجزا دارای پیچیدگی بسیار بیشتری نسبت به انواع قبلی خود هستند که شامل درجه بالاتر سه بعدی بودن، هم در قطعه و هم در شکل مسیر جریان می باشد.
میدان های جریان مربوط به این اجزا نیز به همان اندازه پیچیده و سه بعدی خواهد بود.
از آنجایی که درک رفتار پیچیده این جریان، برای طراحی موفق چنین قطعاتی حیاتی است، وجود ابزارهای تحلیلگر کارآتری که از دینامیک سیالات محاسباتی (CFD) بهره می برند، در پروسه طراحی، اساسی می باشد.
در گذشته، طراحی قطعات توربو ماشین ها با استفاده از ابزارهای ساده ای که بر اساس مدلهای جریان غیر لزج دو بعدی بودند کفایت می کرد.
اگرچه با روند کنونی به سمت طراحی ها و میدانهای جریان پیچیده تر، ابزارهای پیشین دیگر برای تحلیل و طراحی قطعات با تکنولوژی پیشرفته مناسب نیستند.
در حقیقت جریانهایی که با این قطعات برخورد می کنند، به شدت سه بعدی (3D)، ویسکوز، مغشوش و اغلب با سرعت ها ، در حد سرعت صوت می باشند.
این جریان های پیچیده، قابل فهم و پیش بینی نیستند، مگر با بکار بردن تکنیک های مدلسازی که به همان اندازه پیچیده هستند.
برای پاسخگویی به نیاز طراحی چنین ق

تعداد صفحات : 188 صفحه

  متن کامل را می توانید بعد از پرداخت آنلاین ، آنی دانلود نمائید، چون فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است.

پس از پرداخت، لینک دانلود را دریافت می کنید و ۱ لینک هم برای ایمیل شما به صورت اتوماتیک ارسال خواهد شد.

 
« پشتیبانی فروشگاه مرجع فایل این امکان را برای شما فراهم میکند تا فایل خود را با خیال راحت و آسوده دانلود نمایید »
/images/spilit.png
 

دانلود با لینک مستقیم


دانلود دینامیک سیالات در توربو ماشین ها

تحقیق و بررسی در مورد توربو ماشینها

اختصاصی از فی بوو تحقیق و بررسی در مورد توربو ماشینها دانلود با لینک مستقیم و پر سرعت .

تحقیق و بررسی در مورد توربو ماشینها


تحقیق و بررسی در مورد توربو ماشینها

لینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 

تعداد صفحه

 188

برخی از فهرست مطالب

بخش اول

دینامیک سیالات در توربو ماشین ها

ویژگیهای اساسی جریان

جریان در دستگاههای تراکمی:

جریان در فن ها و کمپرسورهای محوری

جریان در کمپرسورهای سانتریفوژ

جریان در توربینهای شعاعی

مدلسازی میدانهای جریان توربو ماشین:

 مراحل مختلف مدلسازی مرتبط با فرآیند طراحی

مدلسازی جریان برای پروسس طراحی جزء به جزء

معادلات حاکم و شرایط مرزی

تحلیل ناپایداری و اثر متقابل ردیف پره ها

پیش بینی آینده:

مسیرهای پیش رو در طراحی قطعه

بخش دوم

آزمونهای کارایی توربو ماشین

آزمونهای کارایی آئرودینامیکی:

تاثیر خصوصیات عملکردی بر روی بازده

تست عملکرد توربو ماشین ها

روش تحلیل تست:

روش تست کردن

اطلاعات عملکردی مورد نیاز

اندازه گیری های فشار استاتیک

اندازه گیری های درجه حرارت کل

بررسی های شعاعی

اندازه گیریهای گشتاور

ابزارآلات بازده:

اندازه گیریهای فشار

مقدمه:

در طراحی کنونی توربو ماشینها، و بخصوص برای کاربردهای مربوط به موتورهای هواپیما، تاکید اساسی بر روی بهبود راندمان موتور صورت گرفته است. شاید بارزترین مثال برای این مورد، «برنامه تکنولوژی موتورهای توربینی پر بازده مجتمع» (IHPTET) باشد که توسط NASA و DOD حمایت مالی شده است.

هدف IHPTET، رسیدن به افزایش بازده دو برابر برای موتورهای توربینی پیشرفته نظامی، در آغاز قرن بیست و یکم می باشد. بر حسب کاربرد، این افزایش بازده از راههای مختلفی شامل افزایش نیروی محوری به وزن، افزایش توان به وزن و کاهش معرف ویژه سوخت (SFC) بدست خواهد آمد.

وقتی که اهداف IHPTET نهایت پیشرفت در کارآیی را ارائه می دهد، طبیعت بسیار رقابتی فضای کاری کنونی، افزایش بازده را برای تمام محصولات توربو ماشینی جدید طلب می کند. به خصوص با قیمتهای سوخت که بخش بزرگی از هزینه های مستقیم بهره برداری خطوط هوایی را به خود اختصاص داده است،  SFC، یک فاکتور کارایی مهم برای موتورهای هواپیمایی تجاری می باشد.

اهداف مربوط به کارایی کلی موتور، مستقیما به ملزومات مربوط به بازده آیرودینامیکی مخصوص اجزاء منفرد توربو ماشین تعمیم می یابد. در راستای رسیدن به اهداف مورد نیازی که توسط IHPTET و بازار رقابتی به طور کلی آنها را تنظیم کرده اند، اجزای توربو ماشینها باید به گونه ای طراحی شوند که پاسخگوی نیازهای مربوط به افزایش بازده، افزایش کار به ازای هر طبقه، افزایش نسبت فشار به ازای هر طبقه، و افزایش دمای کاری، باشند.

بهبودهای چشمگیری که در کارایی حاصل خواهد شد، نتیجه ای از بکار بردن اجزایی است که دارای خواص آیرودینامیکی پیشرفته ای هستند. این اجزا دارای پیچیدگی بسیار بیشتری نسبت به انواع قبلی خود هستند که شامل درجه بالاتر سه بعدی بودن، هم در قطعه و هم در شکل مسیر جریان می باشد.

میدان های جریان مربوط به این اجزا نیز به همان اندازه پیچیده و سه بعدی خواهد بود. از آنجایی که درک رفتار پیچیده این جریان، برای طراحی موفق چنین قطعاتی حیاتی است، وجود ابزارهای تحلیلگر کارآتری که از دینامیک سیالات محاسباتی (CFD) بهره می برند، در پروسه طراحی، اساسی می باشد.

در گذشته، طراحی قطعات توربو ماشین ها با استفاده از ابزارهای ساده ای که بر اساس مدلهای جریان غیر لزج دو بعدی بودند کفایت می کرد. اگرچه با روند کنونی به سمت طراحی ها و میدانهای جریان پیچیده تر، ابزارهای پیشین دیگر برای تحلیل و طراحی قطعات با تکنولوژی پیشرفته مناسب نیستند. در حقیقت جریانهایی که با این قطعات برخورد می کنند، به شدت سه بعدی (3D)، ویسکوز، مغشوش و اغلب با سرعت ها ، در حد سرعت صوت می باشند. این جریان های پیچیده، قابل فهم و پیش بینی نیستند، مگر با بکار بردن تکنیک های مدلسازی که به همان اندازه پیچیده هستند. برای پاسخگویی به نیاز طراحی چنین قطعاتی، ابزارهای CFD پیشرفته ای لازم است که قابلیت تحلیل جریانهای سه بعدی، لزج و در محدوده صوتی، مدل سازی اغتشاش و انتقال حرارت و برخورد با پیکربندی های هندسی پیچیده را داشته باشد. علاوه بر این، جریانهای گذرا (ناپایا) و تعامل ردیفهای چندگانه تیغه ها باید مورد ملاحظه قرار گیرد.

هدف این فصل این است که بازنگری مختصری از مشخصات جریان در انواع مختلف قطعات توربوماشینها ارائه داده و نیز خلاصه ای از قابلیتهای تحلیلی CFD که مورد نیاز برای مدل کردن چنین جریانهایی هستند را بیان کند.

این باید به خواننده، درک بهتری در مورد تاثیر جریان بر طراحی چنین اجزایی و میزان کارایی مدل سازی مورد نیاز برای آنالیز اجزاء بدهد. تمرکز بر روی کاربردهای موتورهای هواپیما خواهد بود، ولی دهانه های ورودی، نازلها و محفظه های احتراق مورد توجه خواهند بود. به علاوه یک بررسی از هر دو گرایش طراحی قطعات و ابزارهای تحلیل CFD را شامل می شود. به علت پیچیدگی این موضوعات، تنها یک بحث گذرا ارائه خواهد شد. اگرچه مراجع فراهم شده اند تا به خواننده اجازه دهد این مباحث را با جزئیات بیشتر جستجو کند.

ویژگیهای میدان های جریان در توربو ماشین ها:

در این قسمت از فصل، خصوصیات اولیه میدانهای جریان توربو ماشینها بررسی خواهد شد. اگرچه بحث اساسا کاربرد موتورهای هواپیما را مورد توجه قرار خواهد داد، ولی بسیاری از خصوصیات جریان برای توربو ماشینها عمومیت دارند علاوه بر بازنگری مختصر بر ویژگیهای میدانهای جریان عمومی، طبیعت جریانهای خاص در انواع


دانلود با لینک مستقیم


تحقیق و بررسی در مورد توربو ماشینها

مرحله ی اول آزمون توربو

اختصاصی از فی بوو مرحله ی اول آزمون توربو دانلود با لینک مستقیم و پر سرعت .

مرحله ی اول آزمون توربو


مرحله ی اول آزمون توربو

آزمون های شبیه سازی شده ی نمونه دولتی و تیزهوشان نشر پویش ( ناشر برتر کتاب های تیزهوشان ) همراه با پاسخ نامه ی تشریحی  و پاسخنامه  و پاسخ برگ که توسط مولفان و مدرسان برتر کشور آقای  ( مسعود بیگدلی
«سرگروه آموزشی پایه ششم شهرستان رباط کریم»
افتخارات:
1-بالاترین آمار قبولی تیزهوشان و نمونه دولتی شهرستانهای استان تهران در سال تحصیلی 93-92
2-اولین استاد پروازی در سطح شهرستانهای استان تهران در زمینه تدریس تیزهوشان ورودی هفتم(دوره اول متوسطه)
3-عضو هیئت مؤلفان انتشارات اندیشه خوارزمی
4-مؤلف کتاب ویژه تیزهوشان
##(40آزمون 5100ثانیه ای)
##(مجموعه سوالات نمونه دولتی و تیزهوشان 31 استان94-93)
***عضو گروه تألیف مجموعه های زیر(چاپ جدید)
##مؤلف کتاب (مجموعه سوالات تیزهوشان و نمونه دولتی 1+31 استان پویش95-94)
##مؤلف کتاب ریاضی 30 استاد
##مؤلف کتاب ادبیات 30 استاد
##مؤلف کتاب علوم 30 استاد
##مؤلف کتاب جامع ریاضی تیزهوشان نیترو(انتشارات پویش)

5-مدرس افتخاری مجموعه آموزش ریاضی ششم ابتدایی(آلما)
6-مدرس برگزیده درس ریاضی ،تیزهوشان ششم(شهر جدید پرند) از جانب اداره کل آموزش و پرورش شهرستانهای استان تهران
7-دارای لوح افتخار از جانب وزیر محترم آموزش و پروش(جناب آقای حاج بابایی)
8-وبسایت برگزیده مجله رشد در سال 93-92) تالیف شده است .


دانلود با لینک مستقیم


مرحله ی اول آزمون توربو

تحقیق آموزش محیط گرافیکی در توربو پاسکال 7

اختصاصی از فی بوو تحقیق آموزش محیط گرافیکی در توربو پاسکال 7 دانلود با لینک مستقیم و پر سرعت .

تحقیق آموزش محیط گرافیکی در توربو پاسکال 7


تحقیق آموزش محیط گرافیکی در توربو  پاسکال 7

دسته بندی :  فنی و مهندسی   _  کامپیوتر و IT

فرمت فایل:  Image result for word doc ( با ویرایش 
حجم فایل:  (در قسمت پایین صفحه درج شده)
تعداد صفحات فایل:  14

 فروشگاه کتاب : مرجع فایل

 

 

 فهرست متن Title : 

 

 قسمتی از محتوای متن Word 

 

برای برنامه نویسی در محیط گرافیکی نیاز به مقدماتی برای ورود به محیط گرافیک است . اولین خط هر برنامه گرافیکی بعد از دستور Program ، فرمان زیر است :

Uses graph ;

با استفاده از دستور uses برنامه شما می تواند از پیمانه ها و ثوابت توربو پاسکال استفاده کند . این ثوابت و پیمانه ها در فایلی که یک unit نامیده می شود جای می گیرند . کدی که در حالت گرافیکی توسط کامپیوتر تولید می شود ، به نوع کامپیوتر بستگی دارد . بنابراین نوع سخت افزار گرافیکی که در اختیار سیستم است باید به توربو پاسکال اعلام شود

 

صفحه نمایشی که مانند یک صفحه مختصات است :

در برنامه نویسی گرافیکی موقعیت هر خط یا هر شکلی را که روی صفحه نمایش رسم می کنید ، باید کنترل کنید . صفحه نمایش را در محیط گرافیکی بصورت مختصات X-Y تعدادی نقطه می توان در نظر گرفت . در اکثر نمایشگرها ابعاد متداول عبارتند از : 200×320 ، 350×640 ، 480×640 . که معمولا" تعداد نقاط در محور X ها بیشتر است .

 

خلاصه ای از توابع و رویه های گرافیکی :

  • Line (X1, Y1, X2, Y2) ;

بین نقاط (X1,Y1) و (X2,Y2) خطی رسم می شود .

  • Rectangle (X1, Y1, X2, Y2) ;

مستطیلی که قطر آن بین نقاط (X1,Y1) و (X2,Y2) است می کشد .

  • Circle (X, Y, R) ;

دایره به مرکز (X,Y) و شعاع R رسم می کند .

 

دستور کار (1 )

در محیط گرافیک توربو پاسکال برنامه ای بنویسید که اشکال زیر را در خروجی رسم کند . سعی کنید توابع را طوری بنویسید که با دریافت مختصات یک نقطه از شکل مثلا" مرکز آن ، تمام شکل را رسم کند . (مانند مثال مطرح شده در جزوه) سعی کنید تمام مختصات لازم برای رسم اشکال را با فرمول بدست آورید و تا حد امکان از استفاده مستقیم از اعداد خودداری کنید .

(توضیحات کامل در داخل فایل)

 

متن کامل را می توانید دانلود نمائید چون فقط تکه هایی از متن در این صفحه درج شده به صورت نمونه

ولی در فایل دانلودی بعد پرداخت، آنی فایل را دانلود نمایید

مرجع فایل با پشتیبانی 24 ساعته 


دانلود با لینک مستقیم


تحقیق آموزش محیط گرافیکی در توربو پاسکال 7

دانلود تحقیق کامل درمورد توربو ماشین ها

اختصاصی از فی بوو دانلود تحقیق کامل درمورد توربو ماشین ها دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق کامل درمورد توربو ماشین ها


دانلود تحقیق کامل درمورد توربو ماشین ها

لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه: 20

 

مقدمه

برای آن که امتداد جریانی را منحرف کنیم یا سرعت آن را تغییر دهیم ، باید نیرویی به آن وارد کنیم . هنگامی که یک پره متحرک امتداد جریانی را منحرف می کند و مومنتم آن را تغییر می دهد ، نیرویی از پره به سیال ـ یا بعکس از سیال به پره ـ وارد می شود . با حرکت پره و جابجا شدن نیرو ، کار انجام می شود . اساس کار توربوماشین ها بر مبنای همین اصل است . پمپها ، دمنده ها و کمپرسورها بر روی سیال کار انجام می دهند و بر انرژی آن می افزایند . توربین های آبی ، گازی و بخاری انرژی سیال را می گیرند و به انرژی مکانیکی روی محور گردنده تبدیل می کنند . کوپلینگ سیالی و مبدل گشتاور ، متشکل از یک پمپ و یک توربین هستند و برای انتقال ملایم قدرت مکانیکی به کار می روند .

تبدیل انرژی در توربوماشین ها پیوسته است . درطراحی توربوماشین ها هم از تئوری بهره می گیرند و هم از آزمایش .

با کاربرد تئوری تشابه می توان از طرح ماشینی که دارای ابعاد و سرعت دورانی مشخصی است و کارآمد بودن خود را در عمل نشان داده است استفاده کرده ، ماشین های مشابه دیگری با ابعاد و سرعت های متفاوت طراحی نمود .

در این گزارش ابتدا تشابه هندسی و تشابه کاری توربوماشین ها را تعریف کرده ، روابط تشابه را به دست می آوریم . سپس تئوری کسکیدها و به دنبال آن تئوری توربوماشین ها را ارائه می دهیم . آنگاه به ترتیب به بررسی توربین های عکس العملی ، پمپها و دمنده ها ، توربین های ضربه ای و کمپرسورهای سانتریفوژ می پردازیم . در انتها نیز پدیده کاویتاسیون را شرح خواهیم داد .

ماشینهای مشابه ، سرعت مخصوص

دو توربو ماشین را درنظر بگیرید که دارای تشابه هندسی باشند یعنی با ضرب ابعاد هندسی یکی از آنها در عدد ثابتی ، ابعاد هندسی متناظر ماشین دیگربه دست آید . اگر این دو ماشین طوری کار کنند که خطوط جریان آنها نیز تشابه هندسی داشته باشند ، گوییم دو ماشین تشابه کاری دارند . در این صورت بین مشخصات کاری دو ماشین نیز تشابه وجود خواهد داشت . برای آنکه بتوانیم در طراحی یک توربوماشین نمونه از اطلاعات مربوط به مدل آن استفاده کنیم ،

بایستی مدل و نمونه علاوه بر تشابه هندسی ، تشابه کاری نیز داشته باشند . متأسفانه مجبوریم از اثرات لزجت صرف نظر کنیم ، زیرا عموما نمی توان هم دو شرط فوق الذکر را برقرار کرد و هم اعداد رینولدز مدل و نمونه را برابر نمود .

در صورتی که خطوط جریان در دو ماشین مشابه باشند ، دیاگرام سرعت ها در ورود به یا خروج از پروانه های دو ماشین مشابه خواهند بود . در شکل(1) دیاگرام سرعت ها در خروجی پروانه یک پمپ نشان داده شده است . حال با        نشان می دهیم . استفاده از این شکل ، شرط تشابه الگوی جریان را فرمول بندی می کنیم . زاویه پره را به

نشان می دهیم . سرعت مطلق سیال از جمعِ  u و سرعت محیطی پروانه را به v سرعت سیال نسبت به پره را به

 نشان می دهیم . مولفه سرعت مطلق در امتداد شعاعیV به دست می آید . سرعت مطلق سیال را به u و v برداری

 نشان می دهیم . متناسب با دبی است . زاویه سرعت مطلق با سرعت محیطی را به Vr نشان می دهیم .  Vr  را به    

 در آنها یکسان باشد و شرط تشابه کاری ایجاب می کند شرط تشابه هندسی دو ماشین ایجاب می کند که زا ویه

 در آنها یکسان باشد .  که زاویه

و دبی حجمی  D، قطر پروانه N در ماشین های مشابه را می توانیم بر حسب سر عت دورانی  شرط برابری

بیان کنیم . Q جریان

   . Vr متناسب است با u و V متناسب است با Vr ثابت ،  است ، پس به ازای Vr = Vsin  چون    

 را می توان به صورت زیر بیان کرد : بنابراین شرط برابری

متناسب است با Vr ، پس D2 برابر است با دبی تقسیم بر سطح جریان . چون سطح جریان متناسب است با Vr

 .ND متناسب است با u، پس N متناسب است با  و D متناسب است با r . چون r برابر است با u از طرفی

لذا رابطه فوق را می توان به صورت زیر بیان کرد :

این رابطه شرط تشابه کاری ماشین های مشابه است .

 بیان کنیم . برای این کار از فرمولA و یک سطح مقطع مثل H دبی ماشین های مشابه را می توانیم بر حسب ارتفاع

اریفیس یعنی :

Q = CdA

برای ماشین های مشابه می توان نوشت :Cd استفاده می کنیم . با ثابت فرض کردن

با تغییر عدد رینولدز تغییر کمی می کند . به همین دلیل راندمان ماشین هایCd است . البته D2  متناسب با A زیرا

مشابه با ابعاد مختلف کمی متفاوت است . تغییر راندمان با تغییر عدد رینولدز را اثر مقیاس گویند . در ماشین های کوچکتر ، شعاع هیدرولیکی مجاری کوچکتر است ، لذا عدد رینولدز جریان کمتر است ، از این رو ضریب اصطکاک بزرگتر است و بنابراین راندمان کمتر می باشد . اختلاف راندمان مدل و نمونه می تواند 1تا 4 در صد باشد .

در تئوری تشابه از اثر مقیاس صرفنظر می شود و لذا برای تعیین راندمان نمونه از روی راندمان مدل باید از روابط تجربی استفاده کرد .

 از معادلات بالا به دست می آوریم :Qبا حذف 

ذیلا برای روشن تر شدن موضوع ، روابط تشابهی فوق را با استفادعه از آنالیز ابعادی به دست می آوریم .

 به دست آوردن روابط تشابه با استفاده از آنالیز ابعادی

متغیرهای موثر در جریان تراکم ناپذیر در یک توربو ماشین عبارتند از : جرم مخصوص و لزجت سیال ، قطر و سرعت دورانی پروانه ، دبی ، ارتفاع و قدرت ماشین . رابطه بین متغیرها به صورت زیر قابل بیان است :

f

 را قرار داده ایم که معرف انرژی بر واحد جرم است . gH که معرف انرژی بر واحد وزن است ، H در این رابطه به جای

با انجام آنالیز ابعادی به دست می آوریم :

F() = 0

با چشم پوشی از اثرات لزجت می توانیم از عدد رینولدز صرفنظر کرده، بنویسیم :

F

گروه های بی بعد فوق به ترتیب ضریب دبی ، ضریب ارتفاع و ضریب قدرت نامیده می شوند . به طوری که دیدیم شرط تشابه کاری دو ماشین ، برابری ضریب دبی آنهاست . در آن صورت ضریب ارتفاع دو ماشین نیز برابر خواهد بود و همچنین ضریب قدرت آنها .

نمودارهایی که تغییرات ارتفاع ، قدرت و راندمان ماشین را در مقابل دبی نشان می دهند ، منحنی های مشخصه نامیده می شوند . با استفاده از روابط تشابه می توان منحنی های مشخصه یک ماشین را از روی منحنی های مشخصه ماشین مشابه دیگری با ابعاد و سرعت متفاوت به دست آورد . منحنی های مشخصه را می توان در دستگاه مختصات بی بعد     را درe و  را به عنوان محور افقی انتخاب کرده ،   رسم کرد . برای این کار

مقابل آن رسم می کنند . با چشم پوشی از اثر مقیاس منحنی های مشخصه بی بعد برای تمام ماشین های مشابه یکسان است .

سرعت مخصوص

در انتخاب نوع توربو ماشین ها و در طراحی مقدماتی آنها به طور گسترده ای از یک پارامتر تشابهی به نام سرعت مخصوص استفاده می شود . سرعت مخصوص ، عددی است ثابت که برای ماشین های مشابه یکسان است . سرعت

 یک دسته پمپNsمخصوص پمپها و توربین ها را معمولا به صورت های متفاوتی تعریف می کنند . سرعت مخصوص

مشابه طبق تعریف عبارت است از سرعت پمپی از آن دسته که دارای چنان ابعادی باشد که دبی واحد را به ارتفاع واحد  را حذف می کنیم :D پمپاژ نماید . برای به دست آوردن فرمول سرعت مخصوص ، در معادلات فوق ،

 معرف سرعت دورانی پمپی خواهد بود  H=1 و Q=1 را از این رابطه حذف کنیم ، مقدار ثابت طرف دوم به ازای gاگر

که دبی واحد را به ارتفاع واحد پمپاژ می کند و این همان سرعت مخصوص است :

سرعت مخصوص در نقطه حداکثر راندمان تعریف می شود . یعنی در رابطه فوق مقادیر سرعت , دبی و ارتفاع مربوط به نقطه حداکثر راندمان هستند .

سرعت مخصوص بی بعد پمپها را به صورت زیر می توان تعریف کرد :

 سرعت زاویه ای بر حسب رادیان بر ثانیه است . سرعت مخصوص بی بعد مستقل از سیستم آحاد است .که در آن

سرعت مخصوص یک دسته توربین مشابه طبق تعریف عبارت است از سرعت توربینی که تحت ارتفاع واحد , توان واحد  , پس می توان نوشت :QH متناسب است با P را تولید نماید . چون

 را حذف کنیم , به عبارت زیر می رسیم :Q و D اگر در معادلات فوق ,

 معرف سرعت دورانی توربینی H=1 و P=1 را از این رابطه حذف کنیم , مقدار ثابت طرف دوم به ازای g و  اگر

 خواهد بود که تحت ارتفاع واحد و توان واحد را تولید می کند و این همان سرعت مخصوص است .

سرعت مخصوص بی بعد توربین ها به صورت زیر تعریف می شود :

با استفاده ازمعادلات اخیر , می توان سرعت مخصوص ماشینی را که برای دبی معلوم و ارتفاع معین لازم است , تخمین زد . پمپهایی که دبی آنها زیاد و ارتفاعشان کم است , سرعت مخصوصشان زیاد است . توربین هایی که ارتفاع آنها زیاد و توان تولیدی شان کم است , سرعت مخصوصشان کم است . تجارب عملی حاکی از آن است که برای حصول حداکثر راندمان , معمولا به ازای هر سرعت مخصوص باید از یک تیپ خاص پمپ یا توربین استفاده کرد .

سرعت مخصوص پمپهای سانتریفوژ کم , پمپهای مختلط متوسط و پمپهای محوری زیاد است . سرعت مخصوص توربین های ضربه ای کم , توربین فرانسیس متوسط و توربین های محوری زیاد است .

از آنجا که معادلات فوق از نظر ابعادی همگن نیستند , مقدار عددی سرعت مخصوص به واحدهای به کار رفته بستگی دارد . در سیستم متریک برای بیان مقادیر عددی سرعت مخصوص , ارتفاع را بر حسب متر , دبی را بر حسب متر

 می باشد .rpm مکعب بر ثانیه , قدرت را بر حسب کیلو وات و سرعت دورانی را بر حسب 

تئوری کسکیدها

در توربو ماشین ها , سیال در یک دسته پره متحرک جریان می یابد و بدین ترتیب به طور مداوم بر روی آن کار انجام می شود و یا از آن کار گرفته می شود . یک ردیف از پره های مشابه را اصطلاحا کسکید گویند . با بررسی جریان در کسکید می توان برخی شرایط لازم برای کارآمد بودن توربوماشینها را دریافت .

ابتدا جریان در کسکید مستقیم ساکن را بررسی می کنیم . با عبور سیال از این کسکید , امتداد جریان آن تغییر

 می کند . نیرویی به سیال وارد می شود , اما با صرف نظر کردن از اثرات اصطکاک و درهمی , کاری بر روی آن انجام نمی شود .

در توربوماشین ها ، پره ها به طور متقارن بر روی پیرامون یک دایره قرار دارند . لذا حال جریان در کسکید دایره ای ساکن را بررسی می کنیم . فرض کنید سیال در امتداد شعاعی به کسکید نزدیک شود . در این صورت گشتاور مومنتم آن در ورودی صفر است . با عبور سیال از کسکید ، گشتاور مومنتم آن تغییر می کند . میزان تغییر گشتاور و مومنتم   بستگی دارد . پس داریم : و دبی جرمی جریان r، شعاع خروجی Vtسیال به مولفه مماسی سرعت خروجی

در این حالت نیز کسکید کاری بر روی سیال انجام نمی دهد .

 دوران می کند . حال یک کسکید دیگر در نظر می گیریم که در داخل کسکید ساکن قرار دارد و با سرعت زاویه ای

  برای کارآمد بودن سیستم ، بایستی سیال با حداقل اغتشاش وارد مجاری پره های متحرک شود . به عبارت دیگر سیال باید در امتداد مماسی وارد شود . اگر سرعت نسبی سیال در ورود به پره مماس بر آن نباشد ، ممکن است پدیده جدایی رخ دهد . جدایی جریان از روی پره ها باعث می شود که لایه مرزی ضخیم شود و سرعت در آن به صفر برسد .

این امر باعث بروز تلفاتی به نام تلفات شوک می شود . با انحراف جریان از امتداد مماسی ، تلفات شوک ( تقریبا متناسب با مجذور انحراف زاویه ای) افزایش یافته ، راندمان ماشین کاهش می یابد . حتی وقتی امتداد سرعت نسبی ورودی مماس بر پره باشد نیز ، اغلب به علت انحنای پره یا واگرایی مجاری جریان ، جدایی رخ می دهد . با عبور جریان از کسکید متحرک ، به طور کلی هم مقدار سرعت تغییر می کند و هم امتداد آن . بدین ترتیب  گشتاور مومنتم جریان تغییر می نماید و سیال بر روی کسکید کار انجام می دهد و یا بعکس کسکید بر روی سیال کار انجام می دهد . در توربین ها مطلوب است که گشتاور مومنتم سیال خروجی از چرخ ، صفر باشد . این گفته قدیمی در زمینه طراحی توربین شهرت یافته است : " سیال بدون شوک وارد شود و بدون سرعت خارج شود."

طراحی توربوماشینها مستلزم تعیین شکل هندسی مناسب برای مجاری جریان و پره هاست ، به طوری که ماشین مشخصات تعیین شده را با حداکثر راندمان ممکن ارائه نماید . هر طرح بخصوص به نوع کار ماشین ، دانسیته سیال و مقدار کاری که بر واحد جرم آن انجام می شود ، بستگی دارد .

تئوری توربوماشین ها

توربین ها از انرژی سیال کار مفید می گیرند . پمپها ، دمنده ها و توربوکمپرسورها به انرژی سیال می افزایند . این عمل در یک چرخ انجام می شود . چرخ از تعدادی پره تشکیل شده است که به یک محور متصل شده اند . از آنجا که پره ها فقط در امتداد مماسی جابجا می شوند ، کار به واسطه جابجایی مولفه مماسیِ نیروی وارد به چرخ انجام می شود . مولفه شعاعی نیروی وارد به چرخ ، در امتداد شعاعی جابجا نمی شود ودر نتیجه نمی تواند کاری انجام دهد .

برای ارائه تئوری توربو ماشین ها فرض می کنیم که مجاری چرخ ، سیال را کاملا هدایت می کنند . به عبارت دیگر فرض می کنیم که چرخ دارای بی نهایت پره با ضخامت صفر باشد . در این صورت سرعت نسبی سیال همواره مماس بر پره خواهد بود . با این فرض جریان ، تقارن دایره ای خواهد داشت . پس حجم کنترلی را برمی گزینیم که شامل چرخ باشد . معادله گشتاور مومنتم برای جریان دائمی و متقارن در این حجم کنترل به صورت ساده زیر در می آید :

  گشتاور مومنتم خروجی از حجم کنترل   گشتاور وارد به سیال داخل حجم کنترل است . T که در آن

  گشتاور مومنتم ورودی به حجم کنترل می باشند .  و

برای بیان روابط از دیاگرام سرعت ها بهره می گیریم . هریک از دیاگرامها را می توان با یک مثلث نمایش داد . اندیس  v سرعت محیطی چرخ و u سرعت مطلق سیال , V 1 را برای ورودی و اندیس 2 را برای خروجی به کار می بریم .   

 را از نقطه ایuو بردارv سرعت نسبی سیال نسبت به چرخ می باشند . برای رسم مثلث سرعت ها , مطابق شکل بردار

 α را به u  با V خواهد بود . زاویه v وصل شود , معرف V به انتهای u  رسم می کنیم . برداری که از انتهای o مانند

 در امتدادV با زاویه پره برابر است . مولفه β نشان می دهیم . با فرض هدایت کامل سیال ,  β- را به  u  با v و زاویه

 نشان می دهیم . با استفاده از این علائم داریم : Vr و در امتداد عمود بر آن را به Vu مماسی را به  

 اگر مثبت باشد حاکی از این استT دبی جرمی جریان است . در معادله فوق , که در آن  که گشتاور مومنتم سیال با عبور از چرخ افزایش می یابد (مانند پمپ) و اگر منفی باشد حاکی از این است که گشتاور  صفرخواهد بود . برای حالت اخیر داریم :T مومنتم سیال کاهش می یابد (مانند توربین) . در مجرایی که فاقد پره باشد

این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید


دانلود با لینک مستقیم


دانلود تحقیق کامل درمورد توربو ماشین ها