فی بوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی بوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پروژه معرفی و طبقه‌بندی فولادهای میکروآلیاژی

اختصاصی از فی بوو پروژه معرفی و طبقه‌بندی فولادهای میکروآلیاژی دانلود با لینک مستقیم و پر سرعت .

پروژه معرفی و طبقه‌بندی فولادهای میکروآلیاژی


پروژه معرفی و طبقه‌بندی فولادهای میکروآلیاژی

 

 

 

 

 

تعداد صفحات :192

فرمت فایل : word (قابل ویرایش)

فهرست مطالب :

عنوان صفحه
فصل اول مقدمه 1
فصل دوم :‌مروری بر منابع 4
1-2- فولادهای کم آلیاژ و دارای استحکام بالا 5
1-1-2- طبقه بندی فولادهای کم آلیاژ دارای استحکام بالا 6
2-1-2- اثرات افزودنی های میکروآلیاژ کننده 8
3-1-2- انواع گوناگون فولادهای فریت – پرلیت میکروآلیاژ شده 8
4-1-2- اثرات عناصر میکروآلیاژی روی مشخصه های به عمل آوری 18
5-1-2- به عمل آوری فولادهای پتک کاری میکروآلیاژ شده 19
6-1-2- کنترل خصوصیات 19
7-1-2-اثرات عناصر میکروآلیاژی شده روی پتک کاری 20
2-2- مهندسی محصولات آهنگری فولادهای ساختمانی میکروآلیاژی 22
3-2- تبلور مجدد استاتیکی فولاد آستنیت تغییر شکل یافته و رسوب سینتیک القا شده در فولادهای میکروآلیاژی وانادیوم 35
1-3-2- تبلور مجدد استاتیکی 37
2-3-2- نمودارهای دما و زمان رسوب PTT 48
3-3-2- مقایسه ی بین Tnr , SRCT 51
4-2- ریز ساختار و ویژگی های فولاد کم آلیاژ مقاوم به دما 54
1-4-2- ترکیب شیمیایی 58
2-4-2-پردازش و عمل آوری ترمو مکانیکی 59
3-4-2- ریز ساختار 62
4-4-2- تنش تسلیم دمای فزاینده 63
5-4-2- سختی ضربه ای 65
6-4-2- مقاومت به دما 66
5-2- فرآیند ترمو مکانیکی و ریز ساختار فولاد میکرو آلیاژی و محصولات میله ای سیمی 68
1-5-2- میکروساختار و خواص آن 72
2-5-2- پیشرفت های بعدی 76
6-2- بهبود استحکام ضربه و خواص کششی در فولاد میکروآلیاژی آهنگری گرم وانادیوم – نیوبیوم از طریق کنترل میکروساختار 77
1-6-2- خواص مکانیکی 80
2-6-2- میکروساختار 85
3-6-2- میکروساختار 90
4-6-2- خواص مکانیکی 93
فصل سوم:نتیجه گیری و پیشنهادات 95
نتیجه گیری 96
پیشنهادات 98
مراجع 99
فهرست اشکال
عنوان صفحه
شکل (1-2)- اثر میزان سرد کاری روی افزایش استحکام تسلیم ناشی از قوی ساختن رسوب در یک فولاد 15/0 درصد وانادیوم 10
شکل(2-2)- اثر مقدار منگنز روی قوی ساختن رسوب فولاد میکروآلیاژ شده وانادیوم با ترکیب پایه 08/0 درصد کربن و 30/0 درصد سیلیسیوم 11
شکل(2-2)- اثر کاربید نیوبیوم روی استحکام تسلیم برای اندازه های متفاوت ذرات کاربیدنیوبیوم 12
شکل a(3-2)- در زبری دانه آستنیت طی گرم کردن مجدد و بعد از نورد گرم برای نگهداری به مدت 30 دقیقه که مقدار تیتانیوم بین080/0% و 022/0% درصد می باشد. 15
شکلb (3-2)- وابستگی استحکام دهی رسوب روی اندازه متوسط رسوب (X) و کسر آن مطابق با تئوری و مشاهدات آزمایشی برای افزودنی های میکروآلیاژ کننده¬ی داده شده 16
شکل (4-2)- خصوصیات عمق -کشیدگی درجه های ورق فولاد 18
شکل (5-2)- سیکل های به عمل آوری برای فولادهای قراردادی و میکروآلیاژ شده (قسمت پایین) ]فولادهای قراردادی کوئنچ شده و تمپر شده: قسمت بالا] 19
شکل (6-2)- شکل تهیه اجزا آهنگری برای فولادهای کم آلیاژ با استحکام بالا با استفاده از عملیات ترمومکانیکی 25
شکل(7-2)- افزودن تیتانیوم به آهن نوع A با تمرکز 005/0 درصد به طور کامل در آستنیت در درجه حرارت 1250 درجه سانتیگراد صورت می گیرد 27
شکل (8-2)- حین سرد شدن کل نیتروژن از فلز حذف نمی شود. اضافه ی نیتروژن ایجاد نیتریدهای BN و ALN حین سرد شدن می کند 28
شکل (9-2)- گرمای لازم برای آهنگری بر اساس اندازه ی دانه ی اولیه آستنیت نمونه های شسته شده از افزایش حرارت آستنیت کردن مشخص می شود 29
شکل(10-2)- زمان نگهداری هم دما اندازه دانه آستنیت زمان بعد از کار گرم در دمای 900 درجه سانتیگراد قبل از سرد شدن 30
شکل(11-2)- ساختار دانه خوب آستنیت اولیه بعد از عملیات ترمومکانیکی و بعد از آبدیده شدن 30
شکل (12-2)- ساختار دانه خوب آستنیت اولیه بعد از عملیات ترمو مکانیکی و بعداز آبدیده
شدن 31
شکل (13-2)- ساختار مارتنزیت – بینیت فولاد نوع B کوئنچ شده 31
شکل (14-2)- ساختار مارتنزیت لایه ای فولاد نوع C خیس شده 32
شکل (15-2)- در داخل لایه های مارتنزیت حضور اجزاء متفاوت سمنتیت به اثبات رسیده
است 32
شکل (16-2)- در دیواره های آستنیت اولیه نوع M23(C,B)6 اجزاء منتشر شده یافت
شده اند 33
شکل (17-2)- اختلاف کسر تبلور مجدد Xa با زمان برای فولاد دارای 043/. وانادیوم 39
شکل (18-2) - اختلاف کسر تبلور مجدد Xa با زمان برای فولاد دارای 043/. وانادیوم 39
شکل (19-2)- اختلاف کسر تبلور مجدد Xa با زمان برای فولاد دارای 060/. وانادیوم 40
شکل (20-2)- اختلاف کسر تبلور مجدد Xa با زمان برای فولاد دارای 060/. وانادیوم 40
شکل (21-2)- اختلاف کسر تبلور مجدد Xa با زمان برای فولاد دارای 093/. وانادیوم 41
شکل (22-2)- اختلاف کسر تبلور مجدد Xa با زمان برای فولاد دارای 093/. وانادیوم 41
شکل (23-2)- اختلاف کسر تبلور مجدد Xa با زمان برای فولاد دارای 093/. وانادیوم 42
شکل (24-2)- طرح 5/0t در برابر دمای معکوس فولاد 043/0 وانادیوم 43
شکل (25-2)- طرح 5/0t در برابر دمای معکوس فولاد 060/0 وانادیوم 43
شکل (26-2)- طرح 5/0t در برابر دمای معکوس فولاد 093/0 وانادیوم 44
شکل (27-2)- طرح انرژی فعال سازی Q در برابر دمای معکوس فولاد 043/0 وانادیوم 44
شکل (28-2) – طرح انرژی فعال سازی Q در برابر دمای معکوس فولاد 060/0 وانادیوم 45
شکل (29-2)- طرح انرژی فعال سازی Q در برابر دمای معکوس فولاد 093/0 وانادیوم 46
شکل (30-2)- نمودارهای PTT فولاد 043/0 وانادیوم 49
شکل (31-2)- نمودار های PTT فولاد 063/0 وانادیوم 50
شکل (32-2)- نمودارهای PTT فولاد 093/0 وانادیوم 50
شکل (33-2)- نمودارهای PTT فولاد 060/0 وانادیوم 51
شکل (34-2) – طرح TMP برای صفحه و تیر 61
شکل (35-2)- ریز ساختارهای نوری بعضی فولادها در موقعیت قبل از نورد کاری 61
شکل (36-2) – فضای روشن میکروسکوپی 63
شکل (37-2)- وابستگیa -تنش تسلیم وb-UTS 64
شکل (38-2)- افزایش دمای متوسط فولاد مقاوم به دما و فولاد نرم 67
شکل(39-2)– وابستگی‌رسانندگی‌حرارتی‌با‌دما‌برای‌آهن خالص و فولادهای ساختمانی 68
شکل (40-2)- منحنی های دما – زمان برای قسمتهای مختلف 74
شکل (41-2)- تغییرات انرژی ضربه ای شارپی با پارامتر آهنگری 80
شکل (42-2)- a - نمودار شماتیکی فرایند ترمو مکانیکی 81
شکل (43-2)- درصد تغییرات طول با سرعت سرد سازی و گرم کردن مجدد و دماهای تغییر شکل 82
شکل (44-2)- تغییرات درصد کاهش فضا با سرعت سرد کردن 82
شکل (45-2)- منحنی های مهندسی فشار- کشش 83
شکل (46-2)- اختلاف استحکام تسلیم و استحکام کشش با سرعت سرد سازی 84
شکل (47-2)- اختلاف استحکام تسلیم و استحکام کشش با دماهای تغییر شکل 84
شکل (48-2)- تغییرات اندازه متوسط دانه آستنیت با دمای گرم کردن مجدد 85
شکل (49-2)- میکروساختار نمونه هایی که مجدداً در دمای 1200 درجه ی سانتیگراد گرم شده‌اند 87
شکل (50-2)- نمونه های بارزی از حضور و توزیع آستنیت گرم شده است 88
شکل (51-2)- تأثیر دمای گرم کردن مجدد و سرعت سرد سازی روی نمودارهای پراش اشعه ی ایکس نمونه ها 89
شکل (52-2)- افزایش درصد حجم آستنیت مجدد گرم شده بر اساس سرعت سرد کردن 89
شکل (53-2)- افزایش درصد فازها برای تغییر شکل 75 درصدی 91
شکل (54-2)- انرژی ضربه‌ای شارپی بر اساس حجم فریت سوزنی و میزان آستنیت باقی ‌مانده 92
شکل (55-2)- منحنی های مهندسی فشار- کشش نمونه هایی که کاهش ارتفاع 75 درصدی در 1200 درجه ی سانتیگراد دارند 93
فهرست جداول
عنوان صفحه
جدول (1-2): ترکیبات بعضی از فولادهای کم آلیاژ با استحکام بالا پوشش یافته در خصوصیات ASTM را بر می شمارد 7
جدول(2-2)- اثر مقدار منگنز روی قوی ساختن رسوب فولاد میکروآلیاژ شده وانادیوم با ترکیب پایه 08/0 درصد کربن و 30/0 درصد سیلیسیوم 11
جدول (3-2)- مقدار اعداد ثابت A و B در معادله 1 برای کاربیدها و نیتریدهای انتخاب شده 23
جدول (4-2)- خواص مکانیکی محصولات انتخاب شده فولادهای میکروآلیاژی برای عناصر آهنگری شده 24
جدول (5-2) – ترکیب شیمیایی فولادها 37
جدول (6-2) – اندازه ی ذرات آستنیت 37
جدول (7-2)- دمای بحرانی تبلور مجدد و ساکن [SRCT , C] 46
جدول (8-2)- مقایسه ی بین مقادیر عملی SRCT(c) , Tnr (c) 52
جدول (9-2)- ترکیب شیمیایی فولادها 58
جدول (10-2) – پارامترهای فرایند و داده های میکروساختاری 60
جدول (11-2)- خواص کششی فولادهای آلیاژی 66
جدول (12-2) – سختی ضربه ای دمای محیط 66
جدول (13-2)- ترکیب شیمیایی فولاد 77
جدول(14-2)- ترکیب شیمیایی فولادهای آزمایش شده 77
جدول (15-2)- نتایج خواص مکانیکی و سختی پذیری فولادهای نام برده شده 33

چکیده
فولادهای میکروآلیاژی به عنوان خانواده‌ای از فولادهای کم آلیاژ با استحکام بالا هستند تولید فولادهای میکروآلیاژی یکی از مهمترین پیشرفت های متالورژیکی چند دهه اخیر بوده است ، این فولادها به خاطر داشتن ترکیب عالی از خواصی همچون استحکام بالا ، چقرمگی مطلوب ، انعطاف پذیری و قابلیت جوشکاری مناسب ،‌از اهمیت ویژه‌ای برخوردارند مقادیر بسیار جزئی از عناصر میکروآلیاژی می توانند تأثیر به سزایی بر خواص نهایی فولاد داشته باشند .
از آنجایی که این فولادها هنوز در دست تحقیق می باشند و همچنین از آنجائیکه یکی از روش های بهبود خواص در فولادهای میکروآلیاژی فرآیندهای ترمومکانیکی (‌از قبیل Hot rolling Forgingو...) می باشند لذا در این پروژه هدف ، بررسی این فرآیند ها و همچنین معرفی و طبقه‌بندی فولادهای میکروآلیاژی می باشد .
کلید واژه : فولادهای میکروآلیاژی ، ترمومکانیکال،‌ آهنگری
مقدمه 
یکی از انواع فولادهای میکروآلیاژی، فولادهای میکروآلیاژی آهنگری می باشند .
فولادهای میکروآلیاژی آهنگری اولین بار اواخر دهه 70 معرفی شدند لازمه ی استفاده از این فولادها رسیدن به استحکام کششی بالا حین آهنگری بود . همچنین از این طریق روش های سرد کردن و آبدیده کردن که پر هزینه و برای محیط زیست مضر بود حذف می شد با این حال بخش هایی که از فولاد آهنگری میکروآلیاژی ساخته می شوند در مقایسه با روش های دیگر استحکام کمتری داشته این موضوع کاربرد آنها را به ویژه در بخش های ایمنی محدود می کرد اولین نسل فولادهای میکروآلیاژی (وانادیوم – منگنز – کربن ) دارای میکروساختار فریت – پرلیت بودند که استحکام پایینی داشتند بنابراین در سالهای اخیر تحقیقات روی حذف یا کاهش پرلیت تشکیل شده پس از جوشکاری متمرکز شده، که دارای میکروساختار فریت – پرلیت دارای استحکام ضربه بالا است. مانند فریت نوک تیز که آن را از طریق کنترل پارامترهای پرداخت و ترمومکانیکی اصلاح می کنند هدف نهایی این تلاش تولید بخش هایی با استحکام و سختی بالا که برای کاربرد در بخش های ایمنی اتومبیل مناسب هستند می باشند یک فریت نوک تیز در دمای پایین تر از فریت – پرلیت پرویوتکتویید و بالا تر از دمای آغاز مارتنزیت شکل می گیرد بنابراین دامنه ی دمای تغییر شکل آن مانند بینیت است همچنین گزارش شده است که مکانیزم تغییر شکل بینیت با فریت نوک تیز مشابه است . ولی سایت های هسته سازی مربوط به آنها متفاوت می باشد در بینیت ضخامت فریت در محدوده های دانه آستنیت آغاز می شود و دسته هایی از صفحات موازی با جهت کریستالوگرافی یکسان تشکیل می دهند. در مقابل به خوبی پذیرفته شده است که فریت نوک تیز به شکل درون دانه ای یا مرز دانه ای در دسته هایی درون دانه های بزرگ آستنیت هسته سازی می کنند و سپس در جهت های گوناگون پخش می شوند همچنین گفته می شود فریت نوک تیز در حقیقت همان بینیت است که بصورت درون دانه ای یا مرز دانه ای هسته سازی شده است یا اینکه از برخوردهای چند گانه فریت و یدمن اشتاتن و فریت پلی گونال که به صورت درون دانه ای یا مرز دانه ای یا هسته سازی شده است به وجود آمده است حالت هسته سازی فریت نوک تیز به گونه ای است که باعث تنظیم آشفته و بی نظمی صفحات و دانه های نرم می شوند و دانه های آن نرم می شود که حاصل آن میکروساختاری است که در مقایسه با بینیت عادی نظم کمتری دارد این ساختار بهتر ، بیشتر شکافها را منحرف می کند و بنابراین از دیدگاه استحکام مناسب تر هستند.
رشد صفحات فریت باعث می شود که میزان کربن آستنیت های باقیمانده بیشتر شوند که ممکن است بدون تغییر باقی بماند یا به مارتنزیت یا بینیت و یا کاربید های درهم تبدیل شوند .
با به کارگیری کشش، آستنیت تغییر شکل نداده و به مارتنزیت تبدیل می شود که سختی کشش را افزایش می دهد در میکروساختار لایه ای فریت ، حذف پرلیت و کاهش تولید کاربیدهای بین لایه ای و کنترل میزان آستنیت باقیمانده برای رسیدن به استحکام بهینه و خواص سختی مناسب ضروری است .
در قسمتی از این پروژه اثر پارامترهای فرآیند ترمومکانیکی روی ویژگی های میکروساختاری که در بالا ذکر شد مورد بررسی قرار گرفته است .
هدف این قسمت توسعه ی فرآیند آهنگری برای رسیدن به استحکام و سختی بالا می باشد تا بتوان بخش های ایمنی اتومبیل را توسط آنها ساخت .
اما بطور کلی هدف ما از انتخاب این موضوع و بحث و بررسی در مورد انواع فولادهای میکروآلیاژی بررسی روش های بهبود خواص مکانیکی این فولادها بطور مثال همین فولاد میکروآلیاژی آهنگری و سایر فولادها می باشد .
برای بررسی روش های بهبود خواص مکانیکی فولادهای میکروآلیاژی روش های مختلفی وجود دارد از جمله روش عملیات حرارتی ، ترمومکانیکی و ... می باشد که ما در این پروژه از روش ترمومکانیکال استفاده می کنیم که شامل بخشهای زیر می باشد .


دانلود با لینک مستقیم


پروژه معرفی و طبقه‌بندی فولادهای میکروآلیاژی

دانلود مقاله کامل درباره فولادهای زنگ نزن

اختصاصی از فی بوو دانلود مقاله کامل درباره فولادهای زنگ نزن دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله کامل درباره فولادهای زنگ نزن


دانلود مقاله کامل درباره فولادهای زنگ نزن

 

 

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل: Word (قابل ویرایش و آماده پرینت)

تعداد صفحه :58

 

بخشی از متن مقاله

فولاد های زنگ نزن

مقدمه و معرفی

اهمیت فولاد[1] در تمدن بشری و نقش ویژه آن در صنعت، کشاورزی و زمینه های گوناگون زندگی کنونی بر کسی پوشیده نیست. امروزه بخش اعظمی از تجهیزات بیمارستانی، وسایل، ابزار و دستگاه های پزشکی، دندان پزشکی و آزمایشگاهی های تشخیص طبی با استفاده از انواع آلیاژ های فولادی ساخته می شود. از سوی دیگر برخی از انواع فولاد زنگ[2] نزن هم به عنوان بیو مواد فلزی در پزشکی و دندان پزشکی مصرف می شود. در واقع، از میان انواع فولاد های موجود، آلیاژ فولاد زنگ نزن برای استفاده در کاربرد های پزشکی مناسب تشخیص داده شده است. نوعی از این گروه برای تهیه کاشتنی ها[3] ، وسایل تثبیت شکست داخلی[4] ، پیچ ها و سیم ها[5]   و صفحه شکسته بندی[6]  در پزشکی و ساخت و تهیه سیم های ارتودونسی[7] ، ابزار های معالجه ریشه[8]  دندان مثل سوهان سوزنی و برقو[9] ، کاشتنی دندانی[10] و تاج یا روکش پیش ساخته[11] در دندان پزشکی مصرف می شوند] 22[.

فولاد زنگ نزن همچنین به طور گسترده ای در کاربرد های پزشکی و دندان پزشکی نظیر تولید ابزارها و وسایل دندانی همچون تیغ چاقوی جراحی[12] ، انبر جراحی[13] و گیره های دندان مصنوعی[14]  مصرف می شوند.

فولاد ها در گستره ی وسیعی از ترکیب شیمیایی در دسترس می باشند که هر یک خواص ویژه ای دارند و برای کاربرد خاصی طراحی و تهیه شده اند. یکی از دلایلی که سبب شده تا آلیاژ های فولادی از نظر مصرف تا به این حد عمومیت و گسترش پیدا کنند این است که محدوده ی خواص مکانیکی که فقط با تغییر اندکی در ترکیب شیمیایی پدید می آید، گسترده و وسیع است.

قبل از معرفی فولاد زنگ نزن به دندان پزشکی در دهه 1930 میلادی و مطرح شدن کاربرد های آن، تنها ماده ای که مشخص گردیده بود مقاومت خوردگی کافی دارد، طلا بود. فولاد زنگ نزن استحکام کششی[15] بالایی دارد و به شکل فنر (سیم انعطاف پذیر و کشسان) در وسایل ارتودونسی متحرک[16] بکار می رود. این آلیاژ همچنین در وسایل ثابت[17] برای ساخت نوار[18] ، براکت[19] و سیم آرک[20] معروف است. سیم ارتودونسی از آلیاژی ساخته می شود که با نام فولاد زنگ‌نزن آستنیتی[21] پایدار شده است.آلیاژ دیگری که برای تهیه سیم ارتودونسی بکار می رود، فولاد زنگ نزن آستنیتی پایدار شده[22] است.

اولین فولادی که برای تهیه کاشتنی بدون مورد استفاده قرار گرفت، آلیاژ فولاد 18 درصد کرُم و 8  درصد نیکل (نوع 18-8 و یا در دسته بندی جدید نوع 302) بود که از فولاد وانادیم دار مصرفی برای تهیه صفحه شکسته بندی، قوی‌تر و مقاوم خوردگی آن نیز بیشتر بود .  فولاد وانادیم دار به مدت طولانی برای کاربرد های کاشتنی مصرف نشد زیرا مقاومت خوردگی آن کافی نبود. پس از آن، فولاد زنگ نزن 18 درصد کرُم و 8 درصد نیکل مولیبدن دار معرفی شد که به منظور اصلاح مقاومت  در برابر خوردگی در آب‌نمک، حاوی مولیبدن بود. این آلیاژ با نام فولاد زنگ نزن 316 شناخته شد. در دهه ی 1950، کربن فولاد زنگ نزن 316 از 08/0 درصد وزنی به حداکثر 03/0 درصد وزنی کاهش یافت تا مقاومت خوردگی بهتری در آب‌نمک حاصل شود. این آلیاژ با نام فولاد زنگ نزن 316 ال معروف شد .

اطلاعات موجود نشان می دهد که در آغاز، فولاد 302 ، 304، نوعی فولاد 18-8  مولیبدن دار و فولاد 316، مورد استفاده قرار گرفت. اما اغلب اوقات مشکلاتی به دلیل عملکرد غیر قابل قبول این آلیاژ به ویژه از نظر حساس شدن اجزاء ساخته شده از فولاد زنگ نزن 316 پدید آمد. از نیمه دهه ی میلادی، بهبود و اصلاحی در قابلیت اطمینان فولادهای زنگ‌نزن برای استفاده در تعویض مفصل ران کامل حاصل شد. این بهبود کیفی از طریق کنترل دقیق‌تر ترکیب شیمیایی و ریز‌ساختار فولاد بدست آمد. مقدار گوگرد فولاد زنگ‌نزن مصرفی در وسایل ارتوپدی به شدت کاهش داده شد. به این ترتیب که از طریق تولید فولاد با فرآیند ذوب تحت خلاء، مقدار گوگرد از 01/0 درصد در سال 1975 به 002/0 درصد در سال 1990 رسید. پس از اصلاحات انجام شده، فولاد زنگ‌نزن 316 ال مهمترین فولاد توصیه شده برای کاربرد‌های پزشکی بود که اصلی‌ترین عدم مزیت آن، تمایل این آلیاژ به خوردگی شیاری محسوب می شود. این آلیاژ تحت شرایط خوردگی شیاری از استحکام خستگی پایینی برخوردار است و همین امر کاربرد آن را برای تهیه کاشتنی تعویض مفصل ران فقط برای بیماران پیرتر، سبک وزن و افرادی که تحرک کمتری دارند محدود
می سازد. البته اصلاحاتی نیز در این آلیاژ ها به کمک نیتروژن و منگنز صورت گرفته است.

نوعی از فولاد زنگ‌نزن که ناخالصی بسیار اندکی داشته باشد و سطح نهایی آن نیز رویین باشد برای کاربرد کاشتنی در بدن مناسب است. استحکام تسلیم فولاد زنگ‌نزن آهنگری شده بیشتر از استحکام فولاد زنگ‌نزن ریختگری است اما استحکام خستگی[23] آن کمتر از سایر آلیاژهای مناسب برای کاشتن در بدن است. فولاد زنگ‌نزن انعطاف‌پذیری خوبی دارد و به سهولت ماشین‌کاری می شود و پیشرفت‌های اخیر، خواص آن را بهبود بخشیده است. به دلیل عدم موفقیت طرح‌های اولیه، استفاده از فولاد زنگ‌نزن در دهه‌ی اخیر به طور پیوسته و به صورت جریان عادی فراگیر انجام نگرفته است. فولاد زنگ‌نزن از نظر فرسایش، سازگاری زیستی و عمر خستگی ضعیف‌تر از آلیاژهای جدید و زیست‌سازگاری همچون سوپرالوی‌هاست اما این آلیاژ هنوز هم برای بیماران پیر‌تر که تحرک آنها محدودتر و طول عمر آن ها کوتاه‌تر است به ویژه هنگامی که هزینه‌های اقتصادی عامل مهمی محسوب می شود مورد توجه است . در جدول 3-1 مقایسه‌ای بین ترکیب شیمیایی فولاد زنگ‌نزن و سایر آلیاژهای مصرفی برای ساخت اجزاء پروتز مفصل ران کامل ارائه شده است و در جدول3-2 نیز خواص مکانیکی فولاد زنگ‌نزن 316 ال و سایر آلیاژهایی که برای ساخت اجزاء پروتز مفصل ران بکار می روند، ارائه گردیده است.

3-2 فولاد زنگ‌نزن

فولاد زنگ‌نزن آلیاژی از آهن و چند عنصر آلیاژی است که در برابر خوردگی مقاوم می باشد. این آلیاژ در خلال جنگ جهانی اول و بطور اتفاقی در انگلستان کشف شد. شناسایی آلیاژ مذکور توسط بری یرلی[24] که متالورژیستی از شفیلد بود، صورت گرفت. شمشی از آلیاژ مورد بحث که مرجوع شده بود، به مدت چند ماه در فضای باز محل کار جا مانده بود و متعاقب آن، مشاهده شد که شمش در هوای مرطوب هیچ‌گونه زنگ‌زدگی ژیدا نکرد. برداشت اولیه این بود که عدم خوردگی و زنگ‌زدگی شمش به دلیل وجود مقدار زیادی کرُم در آن بوده است.

ویژگی های آلیاژ و نیز توانایی آن از نظر مقاومت در برابر خوردگی و زنگ‌زدن، شناسایی و مشخص گردید و در سال 1917، ثبت امتیاز انحصاری[25] آن به انجام رسید. اضافه کردن عنصر کرُم به فولاد کربنی، مقاومت خوردگی[26] آلیاژ را از طریق تشکیل یک پوشش سطحی محافظ از اکسید کرُم و کسب مقاومت در برابر خوردگی، ضروری است که حداقل مقدار کرُم در آلیاژ به میزان 11 درصد باشد. فقط تحت چنین شرایطی است که فولاد حاصل با نام فولاد زنگ‌نزن شناخته می شود.

حدود 90 سال قبل از این، کشف شد که اگر مقدار کرُم موجود در فولاد حداقل برابر 11 درصد باشد، مقاومت در برابر خوردگی و اکسید شدن حاصل می گردد و در سال 1914 بود که فولاد زنگ‌نزن به صورت تجاری عرضه شد. بر حسب تعریف، فولاد زنگ‌نزن به نوعی از آلیاژ آهنی گفته می شود که حداقل حدود 11 درصد کرُم داشته باشد. از اوایل قرن بیستم تا کنون، اصلاحات، توسعه و تجاری کردن فولاد زنگ‌نزن صورت پذیرفته است و هم اینک بیش از صدها نوع فولاد زنگ‌نزن عرضه شده است .

فولادهای کرُم‌داری که میزان کرُم در آنها حدود 12 تا 30 درصد باشد معمولا با نام فولاد زنگ‌نزن شناخنه می شوند. البته گذشته از عناصر آهن، کربن و کرُم، عناصر دیگری نیز می‌تواند حضور داشته باشد و در نتیجه، گستره‌ی وسیعی از ترکیب شیمیایی و متعاقب آن خواص مکانیکی متنوع در انواع فولاد‌های زنگ‌نزن حاصل می گردد. استحکام تسلیم این آلیاژ می تواند از 211 مگا‌پاسکال(3000 پوند بر اینچ مربع) تا بیش از 1760 مگا‌پاسکال (250000 پوند بر اینچ مربع) تغییر کند. این گروه از فولادها به دلیل رویین شدن[27] ناشی از حضور کرُم، در برابر تغییر‌رنگ و رنگ‌باختگی[28] و خوردگی[29] بسیار مقاومند. اگر لایه‌ی محافظ بر اثر عوامل مکانیکی یا شیمیایی گسیخته گردد یا زدوده شود، محافظت در برابر خوردگی لطمه خواهد دید .

 


به طور معمول، فولادهای زنگ‌نزن مصرفی در دندان پزشکی، ریختگی نبوده و به صورت آلیاژ کارشده بکار می‌روند. وسایل و سازه‌هایی که از فولادهای زنگ‌نزن ریختگی کارشده تهیه می‌شوند با اجزاء و وسایلی که از طریق ریخته‌گری آماده می‌گردند متفاوت است و کاربردهای متفاوتی را نیز در بر می‌گیرد. مهمترین کاربرد فولاد زنگ‌نزن کارشده در دندان پزشکی، همانا سیم و سازه‌های ارتودونسی و ابزار معالجه ریشه دندان نظیر مته و برقو است. ابزارها و تجهیزات لابراتوری و کلینیکی نیز از فولاد زنگ‌نزن ساخته می‌شود و سازه‌هایی چون فضا نگهدارنده موقت[30] و یا روکش پیش‌ساخته و دیگر اجزایی که در دهان تعبیه می شود هم از فولاد زنگ‌نزن به شکل کارشده یا از طریق ریخته‌گری تولید می گردد. اگرچه خواص مکانیکی نوع کارشده و ریختگی متفاوت است اما مقاومت خوردگی آلیاژ اساساً به ترکیب شیمیایی آلیاژ و فازهای موجود نهایی وابسته است.


اگرچه عناصر بسیاری را می توان به منظور اصلاح و بهبود خواص به فولادهای کربنی اضافه کرد اما دو فلز کرُم و نیکل، مهمترین عناصر آلیاژی فولادهای زنگ‌نزن محسوب می‌شوند. فولادهای زنگ‌نزن را می‌توان بر اساس ساختار بلوری و مکانیزم استحکام‌بخشی به گروه‌های مختلفی چون فولاد زنگ‌نزن فریتی، مارتنزیتی، آستنیتی، سختی رسوب‌شده و نیز دوپلکس تقسیم‌بندی کردولی به طور معمول، فولادهای زنگ‌نزن مصرفی در پزشکی براساس ریزساختار به سه نوع فولاد زنگ‌نزن آستنیتی، فریتی و مارتنزیتی دسته‌بندی می شوند.

*** متن کامل را می توانید بعد از پرداخت آنلاین ، آنی دانلود نمائید، چون فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است ***


دانلود با لینک مستقیم


دانلود مقاله کامل درباره فولادهای زنگ نزن

دانلود مقاله فولادهای میکروآلیاژی

اختصاصی از فی بوو دانلود مقاله فولادهای میکروآلیاژی دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله فولادهای میکروآلیاژی


دانلود مقاله فولادهای میکروآلیاژی

فولادهای میکروآلیاژی به عنوان خانواده‌ای از فولادهای کم آلیاژ با استحکام بالا هستند تولید فولادهای میکروآلیاژی یکی از مهمترین پیشرفت های متالورژیکی چند دهه اخیر بوده است ، این فولادها به خاطر داشتن ترکیب عالی از خواصی همچون استحکام بالا ، چقرمگی مطلوب ، انعطاف پذیری و قابلیت جوشکاری مناسب ،‌از اهمیت ویژه‌ای برخوردارند مقادیر بسیار جزئی از عناصر میکروآلیاژی می توانند تأثیر به سزایی بر خواص نهایی فولاد داشته باشند .

از آنجایی که این فولادها هنوز در دست تحقیق می باشند و همچنین از آنجائیکه یکی از روش های بهبود خواص در فولادهای میکروآلیاژی فرآیندهای ترمومکانیکی (‌از قبیل Hot  rolling  Forgingو...) می باشند لذا در این پروژه هدف ، بررسی این فرآیند ها و همچنین معرفی و طبقه‌بندی فولادهای میکروآلیاژی می باشد .

کلید واژه : فولادهای میکروآلیاژی ، ترمومکانیکال،‌ آهنگری

 

شامل 178 صفحه فایل  word قابل ویرایش


دانلود با لینک مستقیم


دانلود مقاله فولادهای میکروآلیاژی

تاثیر شرایط و متغیرهای جوشکاری بر مورفولوژی و میزان فریت در فولادهای زنگ نزن آستنیتی 316

اختصاصی از فی بوو تاثیر شرایط و متغیرهای جوشکاری بر مورفولوژی و میزان فریت در فولادهای زنگ نزن آستنیتی 316 دانلود با لینک مستقیم و پر سرعت .

تاثیر شرایط و متغیرهای جوشکاری بر مورفولوژی و میزان فریت در فولادهای زنگ نزن آستنیتی 316


تاثیر شرایط و متغیرهای جوشکاری بر مورفولوژی و میزان فریت در فولادهای زنگ نزن آستنیتی 316

در جوشکاری فولاد زنگ نزن آستینتی ریز ساختار جوش با ساختار آستینتی فلز پایه اختلاف دارد و غالبا فاز فریت در جوش بوجود می آید. اهمیت این فاز در مطالعات خوردگی و میزان تنش های پسماند ناشی از جوشکاری آشکار می شود، لذا در این تحقیق سعی بر آن است تا تاثیر شرایط و متغیرهای جوشکاری بر مورفولوژی و درصد فاز فریت ایجاد شده در فولاد زنگ نزن آستینتی 316 مطالعه گردد


دانلود با لینک مستقیم


تاثیر شرایط و متغیرهای جوشکاری بر مورفولوژی و میزان فریت در فولادهای زنگ نزن آستنیتی 316

ارزیابی رفتار خوردگی و مقاومت به ترک هیدروژنی فولادهای API متداول در خطوط انتقال نفت وگاز در محیط ترش

اختصاصی از فی بوو ارزیابی رفتار خوردگی و مقاومت به ترک هیدروژنی فولادهای API متداول در خطوط انتقال نفت وگاز در محیط ترش دانلود با لینک مستقیم و پر سرعت .

ارزیابی رفتار خوردگی و مقاومت به ترک هیدروژنی فولادهای API متداول در خطوط انتقال نفت وگاز در محیط ترش


ارزیابی رفتار خوردگی و مقاومت به ترک هیدروژنی فولادهای API متداول در خطوط انتقال نفت وگاز در محیط ترش در این مقاله ی کاربردی با فرمت Pdf ارزیابی رفتار خوردگی و مقاومت به ترک هیدروژنی فولادهای API متداول در خطوط انتقال نفت وگاز در محیط ترش مورد تحقیق و پژوهش قرار گرفته است
حضور گاز H2S درکنارنفت خام و فرآورده های نفتی باعث ایجاد شرایط کاملا مساعد جهت ایجاد خسارات هیدروژنی بصورت ترک خوردگی درخطوط لوله و مخازن نگهداری از جنس فولاد API می شوند دراین پژوهش رفتار خوردگی و مقاومت به ترک هیدروژنی در سه گرید فولاد API-X42 وAPI-X65 و API-X52 مربوط به لوله های درزدار که درخطوط انتقال گاز طبیعی استفاده شده بود مورد بررسی قرارگرفت نمونه ها از محل درز جوش منطقه متاثر از حرارت و فلز پایه تهیه شد با توجه به خطرات استفاده از گاز H2S در آزمون خوردگی جهت انجام این آزمون به جای دمش گاز H2S که در استاندارد NACE TM 0284-96 اشاره شده است

دانلود با لینک مستقیم


ارزیابی رفتار خوردگی و مقاومت به ترک هیدروژنی فولادهای API متداول در خطوط انتقال نفت وگاز در محیط ترش