فی بوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی بوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پاورپوینت جامع و کامل درباره آشنایی با شبکه عصبی

اختصاصی از فی بوو پاورپوینت جامع و کامل درباره آشنایی با شبکه عصبی دانلود با لینک مستقیم و پر سرعت .

پاورپوینت جامع و کامل درباره آشنایی با شبکه عصبی


پاورپوینت جامع و کامل درباره آشنایی با شبکه عصبی

فرمت فایل : power point  (لینک دانلود پایین صفحه) تعداد اسلاید  : 56 اسلاید

 

 

 

 

 

 

شبکه عصبی :

lشبکه عصبی مصنوعی روشی عملی برای یادگیری توابع گوناگون نظیر توابع با مقادیر حقیقی، توابع با مقادیر گسسته و توابع با مقادیر برداری میباشد.
lیادگیری شبکه عصبی در برابر خطاهای  داده های آموزشی مصون بوده  و اینگونه شبکه ها با موفقیت به مسائلی نظیر شناسائی گفتار،  شناسائی و  تعبیر تصاویر،  و یادگیری روبات  اعمال شده است.
lشبکه از تعداد دلخواهی سلول یا گره یا واحد و یا نرون تشکیل میشود که مجموعه ورودی ها را به خروجی ربط میدهد.
l

 ساختار شبکه عصبی :

یک شبکه عصبی شامل اجزای سازنده لایه‌ها و وزن‌ها می‌باشد. رفتار شبکه نیز وابسته به ارتباط بین اعضا است. در حالت کلی در شبکه‌های عصبی سه نوع لایه نورونی وجود دارد:
لایه ورودی: دریافت اطلاعات خامی که به شبکه تغذیه شده‌است.
لایه‌های پنهان: عملکرد این لایه‌ها به وسیله ورودی‌ها و وزن ارتباط بین آنها و لایه‌های پنهان تعیین می‌شود. وزن‌های بین واحدهای ورودی و پنهان تعیین می‌کند که چه وقت یک واحد پنهان باید فعال شود.
لایه خروجی: عملکرد واحد خروجی بسته به فعالیت واحد پنهان و وزن ارتباط بین واحد پنهان و خروجی می‌باشد.
 
 
 
 
انواع شبکه عصبی :
شبکه عصبی پرسپترون
شبکه عصبی هاپفیلد
شبکه عصبی همینگ
شبکه عصبی کوهنن
شبکه عصبی انتشار رو به عقب
شبکه عصبی تاخیر زمانی

دانلود با لینک مستقیم


پاورپوینت جامع و کامل درباره آشنایی با شبکه عصبی

تحقیق در مورد شبکه عصبی

اختصاصی از فی بوو تحقیق در مورد شبکه عصبی دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد شبکه عصبی


تحقیق در مورد شبکه عصبی

لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه: 12

 

توصیف

در حالت کلی، یک شبکه عصبی زیستی از مجموعه یا مجموعه‌ای از نورون‌های به صورت فیزیکی به هم متصل یا از لحاظ عملکردی به هم وابسته تشکیل شده‌است. هر نورون می‌تواند به تعداد بسیار زیادی از نورون‌ها وصل باشد و تعداد کل نورون‌ها و اتصالات بین آن‌ها می‌تواند بسیار زیاد باشد. اتصالات، که به آن‌ها سیناپس گفته می‌شود، معمولاً از آکسون‌ها و دندریت‌ها تشکلیل شده‌اند.

هوش مصنوعی و مدل سازی شناختی سعی بر این دارند که بعضی از خصوصیات شبکه‌های عصبی را شبیه سازی کنند. این دو اگرچه در روش‌هاشان به هم شبیه هستند اما هدف هوش مصنوعی حل مسائل مشخصی است در حالی که هدف مدل سازی شناختی ساخت مدل‌های ریاضی سامانه‌های نورونی زیستی است.

شبکه‌های عصبی زیستی

شبکه‌های عصبی زیستی مجموعه‌ای بسیار عظیم از پردازشگرهای موازی به نام نورون اند که به صورت هماهنگ برای حل مسئله عمل می‌کنند و توسط سیناپس‌ها (ارتباط‌های الکترومغناطیسی) اطلاعات را منتقل می‌کنند. در این شبکه‌ها اگر یک سلول آسیب ببیند بقیه سلول‌ها می‌توانند نبود آنرا جبران کرده و نیز در بازسازی آن سهیم باشند. این شبکه‌ها قادر به یادگیری اند. مثلا با اعمال سوزش به سلول‌های عصبی لامسه، سلول‌ها یاد می‌گیرند که به طرف جسم داغ نروند و با این الگوریتم سامانه می‌آموزد که خطای خود را اصلاح کند. یادگیری در این سامانه‌ها به صورت تطبیقی صورت می‌گیرد، یعنی با استفاده ازمثال‌ها وزن سیناپس‌ها به گونه‌ای تغییر می‌کند که در صورت دادن ورودی‌های تازه سامانه پاسخ درستی تولید کند.

معرفی شبکه عصبی مصنوعی شبکه عصبی مصنوعی یک سامانه پردازشی داده‌ها است که از مغز انسان ایده گرفته و پردازش داده‌ها را به عهدهٔ پردازنده‌های کوچک و بسیار زیادی سپرده که به صورت شبکه‌ای به هم پیوسته و موازی با یکدیگر رفتار می‌کنند تا یک مسئله را حل نمایند. در این شبکه‌ها به کمک دانش برنامه نویسی، ساختار داده‌ای طراحی می‌شود که می‌تواند همانند نورون عمل کند. که به این ساختارداده گره گفته می‌شود. بعد باایجاد شبکه‌ای بین این گره‌ها و اعمال یک الگوریتم آموزشی به آن، شبکه را آموزش می‌دهند. در این حافظه یا شبکهٔ عصبی گره‌ها دارای دو حالت فعال (روشن یا 1) و غیرفعال (خاموش یا 0) اند و هر یال (سیناپس یا ارتباط بین گره‌ها) دارای یک وزن می‌باشد. یال‌های با وزن مثبت، موجب تحریک یا فعال کردن گره غیر فعال بعدی می‌شوند و یال‌های با وزن منفی، گره متصل بعدی را غیر فعال یا مهار (در صورتی که فعال بوده باشد) می‌کنند.

 

تاریخچه شبکه‌های عصبی مصنوعی

  1. از قرن نوزدهم به طور همزمان اما جداگانه از سویی نروفیزیولوزیست‌ها سعی کردند سامانه یادگیری و تجزیه و تحلیل مغز را کشف کنند و از سوی دیگر ریاضیدانان تلاش کردند تا مدل ریاضی بسازند که قابلیت فراگیری و تجزیه و تحلیل عمومی مسائل را دارا باشد. اولین کوشش‌ها در شبیه سازی با استفاده از یک مدل منطقی توسط مک کلوک و والتر پیتز انجام شد که امروزه بلوک اصلی سازنده اکثر شبکه‌های عصبی مصنوعی است. این مدل فرضیه‌هایی در مورد عملکرد نورون‌ها ارائه می‌کند. عملکرد این مدل مبتنی بر جمع ورودی‌ها و ایجاد خروجی است. چنانچه حاصل جمع ورودی‌ها از مقدار آستانه بیشتر باشد اصطلاحا نورون برانگیخته می‌شود. نتیجه این مدل اجرای توابع ساده مثل AND و OR بود.

 

  1. نه تنها نروفیزیولوژیست‌ها بلکه روان شناسان و مهندسان نیز در پیشرفت شبیه سازی شبکه‌های عصبی تاثیر داشتند. در سال 1958 شبکه پرسپترون توسط روزنبلات معرفی گردید. این شبکه نظیر واحدهای مدل شده قبلی بود. پرسپترون دارای سه لایه به همراه یک لایه وسط که به عنوان لایه پیوند شناخته شده می‌باشد، است. این سامانه می‌تواند یاد بگیرد که به ورودی داده شده خروجی تصادفی متناظر را اعمال کند. سامانه دیگر مدل خطی تطبیقی نورون می‌باشد که در سال 1960 توسط ویدرو و هاف (دانشگاه استنفورد) به وجود آمد که اولین شبکه‌های عصبی به کار گرفته شده در مسائل واقعی بودند. Adalaline یک دستگاه الکترونیکی بود که از اجزای ساده‌ای تشکیل شده بود، روشی که برای آموزش استفاده می‌شد با پرسپترون فرق داشت.

 

  1. در سال 1969 میسکی و پاپرت کتابی نوشتند که محدودیت‌های سامانه‌های تک لایه و چند لایه پرسپترون را تشریح کردند. نتیجه این کتاب پیش داوری و قطع سرمایه گذاری برای تحقیقات در زمینه شبیه سازی شبکه‌های عصبی بود. آنها با طرح اینکه طرح پرسپترون قادر به حل هیچ مساله جالبی نمی‌باشد، تحقیقات در این زمینه را برای مدت چندین سال متوقف کردند.

این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید


دانلود با لینک مستقیم


تحقیق در مورد شبکه عصبی

استفاده از شبکه عصبی در مدلسازی باران - رواناب در چند حوزه مشابه

اختصاصی از فی بوو استفاده از شبکه عصبی در مدلسازی باران - رواناب در چند حوزه مشابه دانلود با لینک مستقیم و پر سرعت .

استفاده از شبکه عصبی در مدلسازی باران - رواناب در چند حوزه مشابه


استفاده از شبکه عصبی در مدلسازی باران - رواناب در چند حوزه مشابه

• پایان نامه کارشناسی ارشد مهندسی عمران گرایش سازه های هیدرولیکی با عنوان: استفاده از شبکه عصبی در مدلسازی باران - رواناب در چند حوزه مشابه 

• دانشگاه شیراز 

• استاد راهنما: دکتر غلامرضا رخشنده رو 

• پژوهشگر: محمد مهدی شفیعی 

• سال انتشار: تیر 1384 

• فرمت فایل: PDF و شامل 151 صفحه

 

چکیــــده:

رواناب جاری شده در رودخانه‌ها از مهمترین عوامل طراحی سازه‌های هیدرولیکی به حساب می‌آید. حجم آورد رودخانه به پشت سدها و بندها، رسوب انتقال یافته در رودخانه‌ها، طراحی سرریزها، طراحی کانال‌های انحراف آب و غیره از مواردی هستند که در طراحی آنها رواناب نقش مهمی دارد.

بدست آوردن رواناب ناشی از بارندگی حوزه‌ها از پیچیدگی بسیار زیادی برخوردار است. عوامل گوناگونی در جواب حوزه دخیل هستند بطوریکه نمی‌توان کلیه عوامل را در مدلسازی وارد کرد. یکی از بهترین راه‌ها جهت مدلسازی باران - رواناب حوزه‌ها استفاده از مدل‌های جعبه سیاه می‌باشد. این مدل‌ها می‌توانند بدون در نظر گرفتن عوامل موثر بر پیدایش رواناب ارتباط ورودی باران با خروجی رواناب را با استفاده از آمار گذشته پیدا کنند.

در این تحقیق از شبکه عصبی بعنوان ابزار مناسب جهت مدلسازی سود برده شده است. این مدل توانایی ساخت مدل برای عوامل پیچیده را داراست.

جهت حصول به آمار مناسب، اطلاعات چهار حوزه امامه، کسیلیان، کارده و فخرآباد از میان حوزه‌های معرف ایران گردآوری گردید. این اطلاعات شامل باران – رواناب‌های متناظر می‌باشد. بطوریکه اطلاعات بارندگی دارای بازه‌های 15 دقیقه‌ای و اطلاعات رواناب دارای بازه‌های 1 ساعته می‌باشد.

خصوصیات فیزیکی این حوزه‌ها جهت خوشه بندی (دسته بندی) این حوزه‌ها گردآوری گردیدند که از مساحت حوزه، زمان تمرکز، ضریب کشیدگی، ضریب شکل و شیب حوزه بعنوان خصوصیات برتر حوزه در خوشه بندی استفاده شد. این خصوصیات در مدل‌های ART ، SOM وارد گردیده و دسته بندی بوسیله این مدل‌ها صورت گرفته است. مدل SOM، حوزه‌های امامه و کسیلیان را در یک دسته و مدل ART با حفظ حوزه‌های امامه و کسیلیان در همان دسته با توجه به خصوصیات مورد استفاده نسبت تشابه 57.5 درصد را بیان می‌کند.

______________________________

** توجه: خواهشمندیم در صورت هرگونه مشکل در روند خرید و دریافت فایل از طریق بخش پشتیبانی در سایت مشکل خود را گزارش دهید. **

** توجه: در صورت مشکل در باز شدن فایل PDF ، نام فایل را به انگلیسی Rename کنید. **

** درخواست پایان نامه:

با ارسال عنوان پایان نامه درخواستی خود به ایمیل civil.sellfile.ir@gmail.com پس از قرار گرفتن پایان نامه در سایت به راحتی اقدام به خرید و دریافت پایان نامه مورد نظر خود نمایید. **

 


دانلود با لینک مستقیم


استفاده از شبکه عصبی در مدلسازی باران - رواناب در چند حوزه مشابه