فی بوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی بوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

سورس سیستم انتخاب واحد دانشجویی به زبان سی شارپ

اختصاصی از فی بوو سورس سیستم انتخاب واحد دانشجویی به زبان سی شارپ دانلود با لینک مستقیم و پر سرعت .

سورس سیستم انتخاب واحد دانشجویی به زبان سی شارپ


سورس سیستم انتخاب واحد دانشجویی به زبان سی شارپ

سورس سیستم انتخاب واحد دانشجویی به زبان سی شارپ

با سلام خدمت همه کاربران گرامی سایت که همیشه ما رو یاری می کنند.امروز با سورس پروژه سیستم انتخاب واحد دانشجویی به زبان سی شارپ و با پایگاه داده اسکیوال سرور در خدمتتون هستیم.این پروژه خیلی ساده طراحی و کد نویسی شده است این پروژه رو برای یادگیری استفاده از دستورات اسکیوال در سی شارپ توصیه می کنیم.این پروژه رو شما می توانید به صورت رایگان دانلود کنید و ازش لذت ببرید.

 

 

 

 

 

 


امکانات پروژه :

امکان ثبت نام دانشجوی جدید
امکان انتخاب واحد دانشجویان
امکان نمایش دانشجویان ثبت نام شده
امکان ثبت نمرات دانشجویان
امکان مشاهده کارنامه دانشجو
امکان ثبت کاربر جدید ( جهت ورود به سیستم )

نام کاربری:omid
رمز عبور:123456


دانلود با لینک مستقیم


سورس سیستم انتخاب واحد دانشجویی به زبان سی شارپ

انتخاب داده به صورت روش آنتروپی-mutual information

اختصاصی از فی بوو انتخاب داده به صورت روش آنتروپی-mutual information دانلود با لینک مستقیم و پر سرعت .

انتخاب داده به صورت روش آنتروپی-mutual information


انتخاب داده به صورت روش آنتروپی-mutual information

در فایل زیر شبیه سازی در انتخاب داده به کمک روش انتروپی ارائه شده است. داده ها از یک اکسل دریافت می شوند و سپس بعد از انتخاب بهترین داده در اکسل دیگری ذخیره می نماید.

توضیحات زیر با فرمول ها به صورت تایپ شده در وردی جداگانه در کنار شبیه سازی قرار داده شده است. 

اما برخی توضیحات در مورد الگوریتم انتخاب داده در زیر داده شده است:

معیار آنتروپی H(X) برای مجموعه اعداد نامنظم X بر اساس توزیع احتمالاتی P(X) به صورت زیر قابل‌بیان میباشد:

(21)                           

اگر مقادیر X1, X2, …, Xn به عنوان مقادیر تصادفی ورودی با تابع احتمالاتی P(X1), P(X2), …, P(Xn) تعریف شوند. در این صورت H(X) به صورت زیر قابل بازنویسی خواهد بود:

(22)                           

بر اساس دو رابطه (21) و (22) آنتروپی اغلب یک مقدار از عدم قطعیت را در نظر میگیرد. به منظور شفاف شدن بحث، فرض نمایید که متغیر X وجود از بیماری D را نشان می‎دهد. بنابراین اگر عدم قطعیت در مورد بیماری وجود نداشته باشد در این صورت  و یا اگر بیماری اصلاً وجود ندارد در این صورت  در نتیجه آنتروپی برابر با صفر میباشد. اگر وجود یا عدم وجود بیماری به صورت عدم قطعیت اعمال شود در این صورت  و مقدار آنتروپی برابر با 1 خواهد شد. به طور کلی اگر هر یک N بیماری دارای احتمال باشد در این صورت H(X) دارای بیش‌ترین مقدار log2(N) میباشد. برای تعمیم این بحث، مجموع آنتروپی با دو عضو X و Y به صورت زیر قابل‌بیان خواهد بود:

(23)      

با در نظر گرفتن عدم قطعیت برای یک سرای از داده‌ها، مقدار عدم قطعیت سایر متغیرها به صورت زیر تعریف می‌شوند:

(24)          

بنابراین مقدار کل آنتروپی به صورت زیر قابل‌بیان می‎باشد:

(25)  

به منظور مرتبسازی دادهها روش تقابلی به صورت فرموله می‎شود:

(26) 

مقدار عددی بزرگ برای فرمول (26) نشان از همبستگی بالا بین دو عضو X و Y می‌باشد و بالعکس. نحوه فرمول‌بندی برای روش تقابلی و آنتروپی در شکل 4 نشان داده شده است.

(27)                              

(28)                               

(29)                  

(30)                                           

(31)                                               

 

شکل 4. توزیع و انتخاب بر اساس تابع تقابلی

 


دانلود با لینک مستقیم


انتخاب داده به صورت روش آنتروپی-mutual information

انتخاب داده به صورت روش آنتروپی-mutual information

اختصاصی از فی بوو انتخاب داده به صورت روش آنتروپی-mutual information دانلود با لینک مستقیم و پر سرعت .

انتخاب داده به صورت روش آنتروپی-mutual information


انتخاب داده به صورت روش آنتروپی-mutual information

در فایل زیر شبیه سازی در انتخاب داده به کمک روش انتروپی ارائه شده است. داده ها از یک اکسل دریافت می شوند و سپس بعد از انتخاب بهترین داده در اکسل دیگری ذخیره می نماید.

توضیحات زیر با فرمول ها به صورت تایپ شده در وردی جداگانه در کنار شبیه سازی قرار داده شده است. 

اما برخی توضیحات در مورد الگوریتم انتخاب داده در زیر داده شده است:

معیار آنتروپی H(X) برای مجموعه اعداد نامنظم X بر اساس توزیع احتمالاتی P(X) به صورت زیر قابل‌بیان میباشد:

(21)                           

اگر مقادیر X1, X2, …, Xn به عنوان مقادیر تصادفی ورودی با تابع احتمالاتی P(X1), P(X2), …, P(Xn) تعریف شوند. در این صورت H(X) به صورت زیر قابل بازنویسی خواهد بود:

(22)                           

بر اساس دو رابطه (21) و (22) آنتروپی اغلب یک مقدار از عدم قطعیت را در نظر میگیرد. به منظور شفاف شدن بحث، فرض نمایید که متغیر X وجود از بیماری D را نشان می‎دهد. بنابراین اگر عدم قطعیت در مورد بیماری وجود نداشته باشد در این صورت  و یا اگر بیماری اصلاً وجود ندارد در این صورت  در نتیجه آنتروپی برابر با صفر میباشد. اگر وجود یا عدم وجود بیماری به صورت عدم قطعیت اعمال شود در این صورت  و مقدار آنتروپی برابر با 1 خواهد شد. به طور کلی اگر هر یک N بیماری دارای احتمال باشد در این صورت H(X) دارای بیش‌ترین مقدار log2(N) میباشد. برای تعمیم این بحث، مجموع آنتروپی با دو عضو X و Y به صورت زیر قابل‌بیان خواهد بود:

(23)      

با در نظر گرفتن عدم قطعیت برای یک سرای از داده‌ها، مقدار عدم قطعیت سایر متغیرها به صورت زیر تعریف می‌شوند:

(24)          

بنابراین مقدار کل آنتروپی به صورت زیر قابل‌بیان می‎باشد:

(25)  

به منظور مرتبسازی دادهها روش تقابلی به صورت فرموله می‎شود:

(26) 

مقدار عددی بزرگ برای فرمول (26) نشان از همبستگی بالا بین دو عضو X و Y می‌باشد و بالعکس. نحوه فرمول‌بندی برای روش تقابلی و آنتروپی در شکل 4 نشان داده شده است.

(27)                              

(28)                               

(29)                  

(30)                                           

(31)                                               

 

شکل 4. توزیع و انتخاب بر اساس تابع تقابلی

 


دانلود با لینک مستقیم


انتخاب داده به صورت روش آنتروپی-mutual information

انتخاب داده به صورت روش آنتروپی-mutual information

اختصاصی از فی بوو انتخاب داده به صورت روش آنتروپی-mutual information دانلود با لینک مستقیم و پر سرعت .

انتخاب داده به صورت روش آنتروپی-mutual information


انتخاب داده به صورت روش آنتروپی-mutual information

در فایل زیر شبیه سازی در انتخاب داده به کمک روش انتروپی ارائه شده است. داده ها از یک اکسل دریافت می شوند و سپس بعد از انتخاب بهترین داده در اکسل دیگری ذخیره می نماید.

توضیحات زیر با فرمول ها به صورت تایپ شده در وردی جداگانه در کنار شبیه سازی قرار داده شده است. 

اما برخی توضیحات در مورد الگوریتم انتخاب داده در زیر داده شده است:

معیار آنتروپی H(X) برای مجموعه اعداد نامنظم X بر اساس توزیع احتمالاتی P(X) به صورت زیر قابل‌بیان میباشد:

(21)                           

اگر مقادیر X1, X2, …, Xn به عنوان مقادیر تصادفی ورودی با تابع احتمالاتی P(X1), P(X2), …, P(Xn) تعریف شوند. در این صورت H(X) به صورت زیر قابل بازنویسی خواهد بود:

(22)                           

بر اساس دو رابطه (21) و (22) آنتروپی اغلب یک مقدار از عدم قطعیت را در نظر میگیرد. به منظور شفاف شدن بحث، فرض نمایید که متغیر X وجود از بیماری D را نشان می‎دهد. بنابراین اگر عدم قطعیت در مورد بیماری وجود نداشته باشد در این صورت  و یا اگر بیماری اصلاً وجود ندارد در این صورت  در نتیجه آنتروپی برابر با صفر میباشد. اگر وجود یا عدم وجود بیماری به صورت عدم قطعیت اعمال شود در این صورت  و مقدار آنتروپی برابر با 1 خواهد شد. به طور کلی اگر هر یک N بیماری دارای احتمال باشد در این صورت H(X) دارای بیش‌ترین مقدار log2(N) میباشد. برای تعمیم این بحث، مجموع آنتروپی با دو عضو X و Y به صورت زیر قابل‌بیان خواهد بود:

(23)      

با در نظر گرفتن عدم قطعیت برای یک سرای از داده‌ها، مقدار عدم قطعیت سایر متغیرها به صورت زیر تعریف می‌شوند:

(24)          

بنابراین مقدار کل آنتروپی به صورت زیر قابل‌بیان می‎باشد:

(25)  

به منظور مرتبسازی دادهها روش تقابلی به صورت فرموله می‎شود:

(26) 

مقدار عددی بزرگ برای فرمول (26) نشان از همبستگی بالا بین دو عضو X و Y می‌باشد و بالعکس. نحوه فرمول‌بندی برای روش تقابلی و آنتروپی در شکل 4 نشان داده شده است.

(27)                              

(28)                               

(29)                  

(30)                                           

(31)                                               

 

شکل 4. توزیع و انتخاب بر اساس تابع تقابلی

 


دانلود با لینک مستقیم


انتخاب داده به صورت روش آنتروپی-mutual information

انتخاب داده به صورت روش آنتروپی-mutual information

اختصاصی از فی بوو انتخاب داده به صورت روش آنتروپی-mutual information دانلود با لینک مستقیم و پر سرعت .

انتخاب داده به صورت روش آنتروپی-mutual information


انتخاب داده به صورت روش آنتروپی-mutual information

در فایل زیر شبیه سازی در انتخاب داده به کمک روش انتروپی ارائه شده است. داده ها از یک اکسل دریافت می شوند و سپس بعد از انتخاب بهترین داده در اکسل دیگری ذخیره می نماید.

توضیحات زیر با فرمول ها به صورت تایپ شده در وردی جداگانه در کنار شبیه سازی قرار داده شده است. 

اما برخی توضیحات در مورد الگوریتم انتخاب داده در زیر داده شده است:

معیار آنتروپی H(X) برای مجموعه اعداد نامنظم X بر اساس توزیع احتمالاتی P(X) به صورت زیر قابل‌بیان میباشد:

(21)                           

اگر مقادیر X1, X2, …, Xn به عنوان مقادیر تصادفی ورودی با تابع احتمالاتی P(X1), P(X2), …, P(Xn) تعریف شوند. در این صورت H(X) به صورت زیر قابل بازنویسی خواهد بود:

(22)                           

بر اساس دو رابطه (21) و (22) آنتروپی اغلب یک مقدار از عدم قطعیت را در نظر میگیرد. به منظور شفاف شدن بحث، فرض نمایید که متغیر X وجود از بیماری D را نشان می‎دهد. بنابراین اگر عدم قطعیت در مورد بیماری وجود نداشته باشد در این صورت  و یا اگر بیماری اصلاً وجود ندارد در این صورت  در نتیجه آنتروپی برابر با صفر میباشد. اگر وجود یا عدم وجود بیماری به صورت عدم قطعیت اعمال شود در این صورت  و مقدار آنتروپی برابر با 1 خواهد شد. به طور کلی اگر هر یک N بیماری دارای احتمال باشد در این صورت H(X) دارای بیش‌ترین مقدار log2(N) میباشد. برای تعمیم این بحث، مجموع آنتروپی با دو عضو X و Y به صورت زیر قابل‌بیان خواهد بود:

(23)      

با در نظر گرفتن عدم قطعیت برای یک سرای از داده‌ها، مقدار عدم قطعیت سایر متغیرها به صورت زیر تعریف می‌شوند:

(24)          

بنابراین مقدار کل آنتروپی به صورت زیر قابل‌بیان می‎باشد:

(25)  

به منظور مرتبسازی دادهها روش تقابلی به صورت فرموله می‎شود:

(26) 

مقدار عددی بزرگ برای فرمول (26) نشان از همبستگی بالا بین دو عضو X و Y می‌باشد و بالعکس. نحوه فرمول‌بندی برای روش تقابلی و آنتروپی در شکل 4 نشان داده شده است.

(27)                              

(28)                               

(29)                  

(30)                                           

(31)                                               

 

شکل 4. توزیع و انتخاب بر اساس تابع تقابلی

 


دانلود با لینک مستقیم


انتخاب داده به صورت روش آنتروپی-mutual information