دانلود با لینک مستقیم و پر سرعت .
لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه10
شبکه عصبی چیست؟
شبکههای عصبی را میتوان با اغماض زیاد، مدلهای الکترونیکی از ساختار عصبی مغز انسان نامید. مکانیسم فراگیری و آموزش مغز اساساً بر تجربه استوار است. مدلهای الکترونیکی شبکههای عصبی طبیعی نیز بر اساس همین الگو بنا شدهاند و روش برخورد چنین مدلهایی با مسائل، با روشهای محاسباتی که بهطور معمول توسط سیستمهای کامپیوتری در پیش گرفته شدهاند، تفاوت دارد. میدانیم که حتی سادهترین مغزهای جانوری هم قادر به حل مسائلی هستند که اگر نگوییم که کامپیوترهای امروزی از حل آنها عاجز هستند، حداقل در حل آنها دچار مشکل میشوند. به عنوان مثال، مسائل مختلف شناسایی الگو، نمونهای از مواردی هستند که روشهای معمول محاسباتی برای حل آنها به نتیجه مطلوب نمیرسند. درحالیکه مغز سادهترین جانوران بهراحتی از عهده چنین مسائلی بر میآید. تصور عموم کارشناسان IT بر آن است که مدلهای جدید محاسباتی که بر اساس شبکههای عصبی بنا میشوند، جهش بعدی صنعت IT را شکل میدهند. تحقیقات در این زمینه نشان داده است که مغز، اطلاعات را همانند الگوها (pattern) ذخیره میکند. فرآیند ذخیرهسازی اطلاعات بهصورت الگو و تجزیه و تحلیل آن الگو، اساس روش نوین محاسباتی را تشکیل میدهند. این حوزه از دانش محاسباتی (computation) به هیچ وجه از روشهای برنامهنویسی سنتی استفاده نمیکند و بهجای آن از شبکههای بزرگی که بهصورت موازی آرایش شدهاند و تعلیم یافتهاند، بهره میجوید.
یک شبکه عصبی مصنوعی (Artificial Neural Network (ANN)) ایده ای است برای پردازش اطلاعات که از سیستم عصبی زیستی الهام گرفته شده و مانند مغز به پردازش اطلاعات می پردازد . عنصر کلیدی این ایده ، ساختار جدید سیستم پردازش اطلاعات است. این سیستم از شمار زیادی عناصر پردازشی فوق العاده بهم پیوسته تشکیل شده(neurons)که برای حل یک مسأله با هم هماهنگ عمل می کند.ANN ها ،نظیر انسانها ، با مثال یاد می گیرند . یک ANN برای انجام وظیفه ای مشخص ، مانند شناسایی الگو ها و دسته بندی اطلاعات ، در طول یک پروسه یاد گیری ، تنظیم می شود . در سیستم های زیستی یاد گیری با تنظیماتی در اتصالات سیناپسی که بین اعصاب قرار دارد همراه است . این روش ANN ها هم می باشد.
سابقه تاریخی
به نظر می آید شبیه سازی های شبکه عصبی یکی از پیشرفت های اخیر باشد . اگرچه این موضوع پیش از ظهور کامپیوتر ها بنیان گذاری شده و حداقل یک مانع بزرگ تاریخی و چندین دوره مختلف را پشت سر گذاشته است.
خیلی از پیشرفت های مهم با تقلید ها وشبه سازی های ساده و ارزان کامپیوتری بدست آمده است. در پی یک دوره ابتدائی اشتیاق و فعالیت در این زمینه ، یک دوره ی بی میلی و بدنامی راهم پشت سر گذاشته است . در طول این دوره سرمایه گذاری و پشتیبانی حرفه ای از این موضوع در پایین ترین حد خود بود ، پیشرفت های مهمی به نسبت تحقیقات محدود در این زمینه صورت گرفت . که بدین وسیله پیشگامان قادر شدند تا به گسترش تکنولوژی متقاعد کننده ای بپردازند که خیلی برجسته تر از محدودیت هایی بود که توسط Minsky وPapert شناسانده شد. Minsky وPapert ،کتابی را در سال 1969 منتشر کردند که در آن عقیده عمومی را جع به میزان محرومیت شبکه های عصبی را در میان محققان معین کرده بود و بدین صورت این عقیده بدون تجزیه و تحلیل های بیشتر پذیرفته شد. هم اکنون ، زمینه تحقیق شبکه های عصبی از تجدید حیات علایق و متناطر با آن افزایش سرمایه گذاری لذت می برد .
اولین سلول عصبی مصنوعی در سال 1943 بوسیله یک neurophysiologist به نلمWarren McCulloch ویک منطق دان به نام Walter Pits ساخته شد . اما محدودیتهای تکنولوژی در آن زمان اجازه کار بیشتر به آنها نداد.
شبکه های عصبی در مقابل کامپیوتر های معمولی
شبکه های عصبی نسبت به کامپیوتر های معمولی مسیر متفاوتی را برای حل مسئله طی می کنند. کامپیوتر های معمولی یک مسیر الگوریتمی را استفاده می کنند به این معنی که کامپیوتر یک مجموعه از دستور العمل ها را به قصد حل مسئله پی می گیرد. بدون اینکه، قدم های مخصوصی که کامپیوتر نیاز به طی کردن دارد، شناخته شده باشند کامپیوتر قادر به حل مسئله نیست. این حقیقت قابلیت حل مسئله ی کامپیوتر های معمولی را به مسائلی ،محدود می کند که ما قادر به درک آنها هستیم و می دانیم چگونه حل میشوند. اما اگر کامپیوتر ها می توانستند کار هایی را انجام دهند که ما دقیقا نمیدانیم چگونه انجام دهیم ، خیلی پر فایده تر بودند.
شبکه های عصبی اطلاعات را به روشی مشابه با کاری که مغز انسان انجام می دهد پردازش می کنند. آنها از تعداد زیادی از عناصر پردازشی(سلول عصبی) که فوق العاده بهم پیوسته اند تشکیل شده است که این عناصر به صورت مواز ی باهم برای حل یک مسئله مشخص کار می کنند .شبکه های عصبی با مثال کار می کنند و نمی توان آنها را برای انجام یک وظیفه خاص برنامه ریزی کرد مثال ها می بایست با دقت انتخاب شوند در غیر این صورت زمان سودمند، تلف می شود و یا حتی بدتر از این شبکه ممکن است نا درست کار کند. امتیاز شبکه عصبی این است که خودش کشف می کند که چگونه مسئله را حل کند ، عملکرد آن غیر قابل پیش گویی است.
از طرف دیگر ، کامپیوتر های معمولی از یک مسیر مشخص برای حل یک مسئله استفاده می کنند . راه حلی که مسئله از آن طریق حل می شود باید از قبل شناخته شود و به صورت دستورات کوتاه و غیر مبهمی شرح داده شود. این دستورات سپس به زبا ن های برنامه نویسی سطح بالا برگردانده می شود و بعد از آن به کدهایی که کامپیوتر قادر به درک آنها است تبدیل می شود. به طور کلی این ماشین ها قابل پیش گویی هستند و اگر چیزی به خطا انجام شود به یک اشتباه سخت افزاری یا نرم افزاری بر می گردد.
شبکه های عصبی و کامپیوتر های معمولی با هم در حال رقابت نیستند بلکه کامل کننده یکدیگرند . وظایفی وجود دارد که بیشتر مناسب روش های الگوریتمی هستند نظیر عملیات محاسباتی و وظایفی نیز وجود دارد که بیشتر مناسب شبکه های عصبی هستند . حتی فراتر از این ، مسائلی وجود دارد که نیازمند به سیستمی است که از تر کیب هر دو روش بدست می آید (بطور معمول کامپیوتر های معمولی برای نظارت بر شبکه های عصبی به کار گرفته می شوند ) به این قصد که بیشترین کارایی بدست آید.
شبکه های عصبی معجزه نمی کنند اما اگر خردمندانه به کار گرفته شوند نتایج شگفت آوری را خلق میکنند.
چرا از شبکه های عصبی استفاده می کنیم؟
شبکه های عصبی ، با قابلیت قابل توجه در استنتاج معانی از داده های پیچیده یا مبهم ، برای استخراج الگوها و شناسایی روشهایی که آگاهی از آنها برای انسان و دیگر تکنیک های کامپیوتری بسیار پیچیده و دشوار است به کار گرفته می شوند. یک شبکه عصبی تربیت یافته می تواند به عنوان یک متخصص در مقوله اطلاعاتی ای که برای تجزیه تحلیل به آن داده شده به حساب آید.از این متخصص می توان برای بر آورد وضعیت های دخواه جدید و جواب سؤال های " چه می شد اگر " استفاده کرد.
مزیتهای دیگر آن شامل موارد زیر می شود :
- یادگیری انطباق پذیر: قابلیت یاد گیری نحوه انجام وظایف بر پایه اطلاعات داده شده برای تمرین وتجربه های مقدماتی .
- سازماندهی توسط خود: یک ANN می تواند سازماندهی یا ارائه اش را ، برای اطلا عاتی که در طول دوره یادگیری در یافت می کند، خودش ایجاد کند.
- عملکرد بهنگام(Real time ) : محاسبات ANN می تواند بصورت موازی انجام شود، و سخت افزارهای مخصوصی طراحی و ساخته شده است که می تواند از این قابلیت استفاده کند.
- تحمل اشتباه بدون ایجاد وقفه در هنگام کد گذاری اطلاعات : خرابی جزئی یک شبکه منجر به تنزل کارایی متناظر با آن می شود اگر چه تعدادی از قابلیت های شبکه ممکن است حتی با خسارت بزرگی هم باقی بماند.
تفاوتهای شبکههای عصبی با روشهای محاسباتی متداول و سیستمهای خبره
گفتیم که شبکههای عصبی روش متفاوتی برای پردازش و آنالیز اطلاعات ارائه میدهند. اما نباید این گونه استنباط شود که شبکههای عصبی میتوانند برای حل تمام مسائل محاسباتی مورد استفاده واقع شوند. روشهای محاسباتی متداول همچنان برای حل گروه مشخصی از مسائل مانند امور حسابداری، انبارداری و محاسبات عددی مبتنی بر فرمولهای مشخص، بهترین گزینه محسوب میشوند. جدول 1، تفاوتهای بنیادی دو روش محاسباتی را نشان میدهد.
مشخصه
روش محاسباتی متداول
)شامل سیستمهای خبره(
شبکههای عصبی مصنوعی