فی بوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی بوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود تحقیق روشی جدید برای الگوریتم زمانبندی CPU :با گردش بنوبت ژنتیکی

اختصاصی از فی بوو دانلود تحقیق روشی جدید برای الگوریتم زمانبندی CPU :با گردش بنوبت ژنتیکی دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق روشی جدید برای الگوریتم زمانبندی CPU :با گردش بنوبت ژنتیکی


دانلود تحقیق روشی  جدید برای الگوریتم زمانبندی CPU :با گردش بنوبت ژنتیکی

مقدمه
یک موضوع جالب در سیستم عامل, زمانبندی CPU است.این زمانبندی به تخصیص CPU مربوط است که فراینده ها را در سیستمی کامپیوتری اجرا میکند.زمانبندی CPU وظیفه ی اصلی سیستم عامل است[1].زمانبندی باید بدرستی برای نگه داشتن بیطرفی و جلوگیری از فرایندهایی که هرگز CPU را تخصیص نمیدهد انجام شود(فرایند گرسنگی).زمانبندی CPU ضروری است , بخصوص در سیستم شبکه ی کامپیوتری که از گروهی از ایستگاههای کاری و سرویس دهندهها تشکیل میشود.سپس,در این سیستم عامل جدید ,کامپیوتر چند وظیفه ای ,یک هدف است و این به الگوریتم برای زمانبندی CPU متکی است.بهمین دلیل CPU بخش موثر یا مهم یک کامپیوتر است.[1].علاوه بر این ,در این عصر به کمک VLSL (در مقیاس بسیار بزرگ مدار مجتمع)ممکن است پردازنده هایی با قدرت بالا تولید کنند.این قدرت شگفت انگیز بایداستفاده شود تا بی فایده نباشد.همزمان با قدرت محاسبه ی پردازنده, در برنامه های کاربردی افزایش وجود دارد که آن قدرت را استفاده میکند. یک معیار که باید بوسیله ی برنامه انجام شود ,به حداقل رساندن میانگین زمان انتظار برای همه ی فرایندها در بدست آوردن تخصیص CPU است.الگوریتمهای مختلفی برای زمانبندی CPU وجود دارد:یکی از آنها گردش بنوبت(RR) است.مفهوم اساسی در RR استفاده از اشتراک گذاری زمان است[3].هر فرایند همان زمان CPU را بدست می آورد یعنی زمان کوانتومی, که بعنوان محدودیت در زمان پردازش ,بطور کلی در محدوده ی 1-100 میلی ثانیه عمل میکند.بعد از اینکه زمان کوانتومی برای فرایندی بپایان رسید,فرایند از اجرای آن متوقف میشود و در صف آماده گذارده میشوند.سپس ,فرایند بعدی انتخاب میشودتا اجرا شود.این مراحل چندین بار اجرا خواهند شد تا زمانیکه همه ی فرایندها بطور کامل بوسیله ی CPU بکار روند.اگر چه محدوده ی مقدار برای زمان کوانتومی وجود دارد,هنوز هیچ استانداردی وجود ندارد. ضمنا اگر زمان کوانتومی بسیار زیاد باشد,زمان مورد نیاز برای پاسخ / انتظار (چقدر زمان مورد نیاز است که آن بکار گرفته شود) کاملا زیاد است.علاوه براین, اگر خیلی کم باشد برای CPU مخارج کلی بوجود می آورد.جستجو برای بهترین زمان کوانتومی هدف دارد که به حداقل رساندن میانگین زمان انتظار برای گروهی از فرایندهاست.امیدواریم که هر فرایند بتواند کارش را در زمان معقول انجام دهد.تسریع کننده  یک فرایند اثرات کارش را در بسیاری از فرایندها بپایان میرساند که میتواند بوسیله ی CPU بکار گرفته شود.این کار به توان عملیاتی بهتری از CPU میرسد برای اینکه همیشه مشغول است و هرگز غیرفعال نیست.براساس مقدمه ی بالا فکر میکنیم برای پیدا کردن بهترین کوانتوم برای بدست آوردن میانگین بهتری از زمان انتظار,مدت زمان صرف شده و حداقل تعویض بستر لازم است.الگوریتم ژنتیکی را پیشنهاد میکنیم که با گردش بنوبت سنتی ترکیب میشود.


به زبان ساده تر
   محدوده کاری الگوریتم ژنتیک  بسیار وسیع می باشد و هر روز با پیشرفت روزافزون علوم و تکنولوژی استفاده از این روش در بهینه سازی و حل مسائل بسیار گسترش یافته است. الگوریتم ژنتیک   یکی از زیر مجموعه های محاسبات تکامل یافته می باشد که رابطه مستقیمی با مبحث هوش مصنوعی دارد در واقع الگوریتم ژنتیک  یکی از زیر مجموعه های هوش مصنوعی می باشد.  الگوریتم ژنتیک را می¬توان یک روش جستجوی کلی نامید که از قوانین تکامل بیولوژیک طبیعی تقلید می¬کند .الگوریتم ژنتیک برروی یکسری از جواب¬های مساله به امید بدست آوردن جوابهای بهتر قانون بقای بهترین را اعمال می کند. درهر نسل به کمک فرآیند انتخابی متناسب با ارزش جواب¬ها و تولید مثل جواب-های انتخاب شده به کمک عملگرهایی که از ژنتیک طبیعی تقلید شده¬اند ,تقریب¬های بهتری از جواب نهایی بدست می¬آید. این فرایند باعث می-شود که نسلهای جدید با شرایط مساله سازگارتر باشد.

فصل اول

تاریخچه
   حساب تکاملی ,برای اولین بار در سال 1960 توسط آقای ریچنبرگ ارائه شد که تحقیق وی در مورد استراتژی تکامل بود.بعدها نظریه او توسط محققان زیادی مورد بررسی قرار گرفت تا اینکه الگوریتم ژنتیک  (GA  ) توسط جان هولند(John Holland ) و در سال 1975 در دانشگاه میشیگان ,ارائه شد.
در سال 1992 نیز جان کوزا (John Koza ) از الگوریتم ژنتیک  (GA  ) برای حل و بهینه سازی مسائل مهندسی پیشرفته استفاده کرد و توانست برای اولین بار روند الگوریتم ژنتیک  (GA  )  را به زبان کامپیوتر در آورد و برای آن یک زبان برنامه نویسی ابداع کندکه به این روش برنامه نویسی ,برنامه نویسی ژنتیک (GP ) گویندو نرم افزاری که توسط وی ابداع گردید به نرم افزار LISP مشهور است که هم اکنون نیز این نرم افزار کاربرد زیادی در حل و بهینه سازی مسائل مهندسی پیدا کرده است .

 

 

فهرست مطالب
مقدمه ....................................................................................................1
فصل اول
چکیده....................................................................................................2
تاریخچه الگوریتمژنتیک...................................................................................3
اهداف ..........................................................................................3
ساختار الگوریتم‏های ژنتیکی...........................................................................4

عملگرهای الگوریتم  ژنتیک.....................................................................5
روند کلی الگوریتم‏های ژنتیکی............................................9
روند کلی بهینه سازی و حل مسائل در الگوریتم ژنتیک :.....................................11
شرط پایان الگوریتم........................................12
    فصل دوم
توضیح الگوریتم ژنتیک  در 12 قدم...................................................................................18
قدم اول :  بدست آوردن تابع هدف (Cost Function) با n متغیر………………………...18

قدم دوم : تعیین طول کروموزوم. ................................20

قدم سوم : تولید جمعیت اولیه. ..........................................21
قدم چهارم: تبدیل هر ژن   از کروموزوم به اعدادی در بازه دامنه همان متغیر.......................23
قدم پنجم :.........................................................................................25
قدم ششم : :.........................................................................................26
قدم هفتم : تعیین تعداد کروموزوم شرکت کننده در عمل پیوند .:.......................27
قدم هشتم : انتخاب کروموزومهایی که در عمل پیوند شرکت می کنند ..................................27
قدم نهم :  پیوند (crossover) . ...............................................................31
قدم دهم : جهش (mutation)   ........................................................................................36
قدم یازدهم : حفظ بهترین کروموزوم 36……………………………………..
قدم دوازدهم : 37……………………………

فصل سوم
روش پژوهش..................................40
نتایج و بحث:...............................41
نتیجه گیری و کارهای آینده................................................50
نتیجه گیری‌ کلی.............................................................51
منابع...................................43

 

 

فهرست تصاویر

فصل اول
تصویر 1-1...........................................................................................6
تصویر 1-2...........................................................................................7

تصویر 1-3...........................................................................................8

تصویر 1-4...........................................................................................8

تصویر 1-5...........................................................................................9
تصویر 1-6...........................................................................................10

تصویر 1-7...........................................................................................11

تصویر 1-8...........................................................................................12


فصل دوم
تصویر 2-1...........................................................................................................................................................30
فصل سوم
تصویر 3-1.........................................................................................................................................................42
تصویر 3-2.........................................................................................................................................................43
تصویر 3-3........................................................................................................................................................44
تصویر 3-4.........................................................................................................................................................45
تصویر 3-5.........................................................................................................................................................46
تصویر 3-7.........................................................................................................................................................47
تصویر 3-8.........................................................................................................................................................48
تصویر 3-9.........................................................................................................................................................48
تصویر 3-10.........................................................................................................................................................49
تصویر 3-11.........................................................................................................................................................49
تصویر 3-12.........................................................................................................................................................50
تصویر 3-13.........................................................................................................................................................51
تصویر 3-14.........................................................................................................................................................51
تصویر 3-15.........................................................................................................................................................52

 

 

 

شامل 67 صفحه word و 60 صفحه pdf و 53 صفحه powerpoint


دانلود با لینک مستقیم


دانلود تحقیق روشی جدید برای الگوریتم زمانبندی CPU :با گردش بنوبت ژنتیکی
نظرات 0 + ارسال نظر
امکان ثبت نظر جدید برای این مطلب وجود ندارد.