مقدمه:
امروز وابستگی علوم کامپیوتر، مکانیک و الکترونیک نسبت به هم زیاد شدهاند و هر مهندس و با محقق نیاز به فراگیری آنها دارد، و لذا چون فراگیری هر سه آنها شکل به نظر میرسد حداقل باید یکی از آنها را کاملاً آموخت و از مابقی اطلاعاتی در حد توان فرا گرفت. اینجانب که در رشته مهندسی مکانیک گرایش خودرو تحصیل میکنم، اهمیت فراگیری علوم مختلف را هر روز بیشتر حس میکنم و تصمیم گرفتم به غیر از رشته تحصیلی خود سایر علوم مرتبط با خودرو را محک بزنم. میدانیم که سالهاست علوم کامپیوتر و الکترونیک با ظهور میکروچیپها پیشرفت قابل ملاحظهای کردهاند و این پیشرفت دامنگیر صنعت خودرو نیز شده است، زیرا امروزه مردم نیاز به آسایش، ایمنی، عملکرد بالا از خودرو خود توقع دارند. از نشانههای ظهور الکترونیک و کامپیوتر در خودرو پیدایش سنسورها در انواع مختلف، و سیستمهای اداره موتور و سایرتجهیزات متعلقه می باشد. این تجهیزات روز و به روز تعدادشان بیشتر و وابستگی علم مکانیک به آن ها بشتر میشود. در ادامه سعی دارم نگاهی به تولید وسنسورهای موجود در بازار بیاندازیم و زمینه را برای ساخت یک سنسور پارک مهیا کنم، تا از ابزارهای موجود حداکثر بهره را برده وعملکرد مطلوب ارائه داد.
فصل اول
سنسور چیست؟
سنسور چیست؟
امروزه بحث سنسور به اهمیت مفاهیمی از قبیل میکروپرسسور (پردارزش گر)، انواع مختلف حافظه وسایر عناصر الکترونیکی رسیده است، با این وجود سنسور هنوز هم فاقد یک تعریف دقیق است همچنانکه کلمات الکترونیکی از قبیل پروب، بعدسنج، پیک آپ یا ترنسدیوسر هنوز هم معانی لغوی ندارند. جدا از اینها کلمه سنسور خود ریشه بعضی کلمات هم خانواده نظیر المان سنسور، سیستم سنسور، سنسور باهوش و تکنولوژی سنسور شده است کلمه سنسور یک عبارت تخصصی است که از کلمه لاتین Sensorium، به معنی توانایی حس کرد، یا Sensus به معنی حس برگرفته شده است. پیش از آن که بحث را ادامه دهیم لازم است عبارت سنسور را در صنعت الکترونیک تعریف کنیم:
یک سنسور هم کمیت فیزیکی معین را که باید اندازهگیری شود به شکل یک کمیت الکتریکی تبدیل میکند، که میتواند پردازش شود یا به صورت الکترونیکی انتقال داده شود. مثلاً یک سنسور رنگ میتواند تغییر در شدت نور را به یک پروسه تبدیل نوری الکترونی به صورت یک سیگنال الکتریکی تبدیل کند. بنابراین سنسور را میتوان به عنوان یک زیر گروه از تفکیک کنندهها که وظیفهی آن گرفتن علائم ونشانهها از محیط فیزیکی و فرستادن آن به واحد پردازش به صورت علائم الکتریکی است تعریف کرد. البته سنسوری مبدلی نیز ساخته شدهاند که خود به صورت IC میباشند و به عنوان مثال (سنسورهای پیزوالکترونیکی، سنسورهای نوری).
وقتی ما از سنسوری مجتمع صحبت میکنیم منظور این است که تکیه پروسه آمادهسازی شامل تقویت کردن سیگنال، فیلترسازی، تبدیل آنالوگ به دیجیتال و مدارات تصحیح میباشند، در غیر این صورت سنسوری که تنها سیگنال تولید میکند به نا سیستم موسوم هستند.
در نوع پیشرفته به نام سنسور هوشمند یک واحد پردازش به سنسور اضافه شده است تا خورجی آن عاری از خطا باشد منطقیتر شود. واحد پردازش سنسور که به صورت یک مدار مجتمع عرضه میشود اسمارت (Smart) نامیده میشود. یک سنسور باید خواص عمومی زیر را داشته باشد تا بتوان در سیستم به کار برد که عبارتند از:
حساسیت کافی، درجه بالای دقت و قابلیت تولید دوباره خوب، درجه بالای خطی بودن، عدم حساسیت به تداخل و تاثیرات محیطی، درجه بالای پایداری و قابلیت اطمینان، عمر بالای محصول و جایگزینی بدون مشکل.
امروزه با پیشرفت صنعت الکترونیک سنسوری مینیاتوری ساخته میشود که از جمله مشخصهی آن میتوان به موارد زیر اشاره کرد:
سیگنال خروجی بدون نویز، سیگنال خروجی سازگار با باس، احتیاج به توان پایین.
فصل 2
تکنیک های تولید سنسور
تکنیکهایی در تولید سنسور:
تکنولوژی سنسور امروزه براساس تعداد نسبتاً زیادی از سنسورهای غیرمینیاتوری استوار شده است. این امر با بررسی ابعاد هندسی سنسوریهایی برای اندازهگیری فاصله، توان، شتاب، سیال عبوری فشار و غیره مشاهده میشود. برای اکثر سنسورها این ابعاد از cm10 تجاوز میکند. اغلب ابعاد، سنسورها توسط خود سنسور تعیین نمیشود بلکه وسیله پوشش خارجی آن مشخص میگردد. با این وجود، حتی در چنین مواردی خود سنسورها از نظر اندازه در حد چند سانتیمتر هستند. چنین سنسوریهایی که میتواند گاهی خیلی گرانبها باشند، برای مثال در زمینة اندازهگیری پروسة. تکنولوژی تولید و رباتها، تکنولوژیهای میکروالکترونیک زیر اکثراً به کار برده میشوند:
تکنولوژی سیلیکان، تکنولوژی لایه نازک، تکنولوژی لایه ضخیم/هیبرید، سایر تکنولوژیهای نیمه هادیپرسوههای دیگری نیز در تولید سنسور بکار برده میشود، از قبیل تکنولوژیهای فویل سینتر، تکنولوژی فیبرنوری، مکانیک دقیق، تکنولوژی لیزر نوری، تکنولوژی مایکروویو و تکنولوژی بیولوژی. بعلاوه، تکنولوژیهایی از قبیل پلیمرها، آلیاژهای فلزی یا مواد پیزوالکتریکی نیز نقش حساسی را در تولید سنسور بازی میکنند.از آنجایی که سیلیکان و نیمه هادیهای دیگر بطور خیلی گسترده در میکروالکترونیک بکار برده می شوند. در ادامه به تشریح این پروسه تولید میپردازم.
فصل 3
سنسور سیلیکانی
سنسورهای سیلیکانی:
استراتژی ترجیح داده شده در ساخت سنسوریها برمبنای سیلیکانی جدید بهرهمند شدن از تکنیکها و پردازشهایی هست که قبلاً در صنعت مدار مجتمع (IC) بر مبنای سیلیکان بنا نهاده شده است و به این طریق میتوانذ از تجربیات و نتایج این بخش صنعتی سود جست
خواص سیلیکان واثرات آن بر سنسور:
سیلیکان یک ماده مناسب برای تکنولوژی سنسور است به ظرط آن که اثرات فیزیکی و شیمیایی کافی با قوت قابل قبول نشان دهد که میتواند در ساختارهای غیرپیچیده در طول گسترة وسیعی از درجه حرارتها بکار برده شود. استفاده از سیلیکان دارای چندین پی آمد برای سنسورها میباشد. نخست آن که، خواص فیزیکی سیلیکان میتواند مستقیماً برای اندازهگیری کمیت اندازهگیری شوند. مطلوب به کار برده شود.
در جدیدترین تحولی که در سال 1980 جلوهگر شد، ارتباط تکنولوژی میکروالکترونیک با تکنیکهای ایجاد شده بویژه برای تولید سنسور است، از قبل برداشتن نم غیریکسان، یا شیشه آندی در اتصال سیلیکانی. به این طریق خواص مکانیکی بسیار خوب سیلیکان تک کریستال میتواند برای ساخت سنسورهای بدیع به کار برده شود. ای تکنولوژی که به نام میکرومکانیک موسوم است منجر به تولید عناصر سیلیکانی مکانیکی یا مکانیکی/ الکترونیکی با ابعادی به اندازة مشابه الکترونیکی آنها میگردد، که از نظر اندازه چندین میکرومتر هستند. سیلیکان تک کریستالی بویژه بخاطر خواص مکانیکی عالی خود با این تکنولوژی بخوبی سازگار است. تک کریستالی تغییر ماهیت نمیدهد. با این وجود، شکنندگی آن میتواند یک ایراد باشد. همچون الماس، این کریستال میتواند در عرض ضخامت مختلف شکسته میشود. نتیجه آن که بسیاری از سنسورهای ساخته شده بر مبنای سیلیکان تک کریستالی به کاربردهایی که در آن درجه حرارت به بالاتر از 150-120 درجه سانتی گرد افزایش پیدا نمی کند محدود میشوند.
مراحل تولید در تکنولوژی سیلیکان:
ساخت سنسورهای سیلیکانی بطور عمده براساس عملیات بکار برده شده در تکنولوژی نیمه هادی مدرن استوار است. که برای تولید عناصر میکروالکترونیکی ابداع شدهاند. تکنولوژی صفحهای سیلیکان نه فقط برتولیدات مدارات مجتمع غلبه میکند، بلکه یک عنصر تعیین کننده در تولید بسیاری از سنسورهای سیلیکانی نیز میباشد این امر منجر به مزایای زیر میشود:
ساخت کم هزینه سنسورها به تعداد زیاد، مینیاتورسازی سنسور تجمع یکپارچه و الکترونیک، ساخت سنسورهای چند گانه (سنسورهای چند گانه برروی یک چیپ تنها)، استفاده از چیپهای بزرگ یا، در بعضی موارد، و وینرهای کمل (مثلاً سلولهای خورشیدی، سنسوریهای نوری الکتریکی حساس به وضعیت)، امکان ساخت به بعدی که در آن تکنیکهای خاص برای برش عمیق و غیر ایزوتروپیک و لایههای توقف برش خاص برای خلق شکل سه بعدی عناصر سیلیکاتی مینیاتور شده به کار برده میشود، استفاده از دیسکهای خیلی نازک یا قسمتهای خیلی نازک (سنسوریهای فشار یا شتاب)، نشست دادن لایههای سنسور نازک بر و روی زمینة سیلیکان که خواص سنسور محدود سیلیکانی را توسعه میدهد.
ویژگیهای دیگر را میتوانید در کتابهای میکرومکانیک مطالعه نمایید. ولی قبل از خلاصهای از میکرومکانیک را خدمت شما عرض می کنم:عبارت میکرومکانیک، یا تشابهات آن به یک شاخه علمی گفته میشود که در آن هدف ساخت میکروسیستمهای پیچیده متشکل از سنسورهای بسیار مجتمع، یک طبقه پردازش سیگنال لا+ رنجشهای مکانیکی قابل حرکت میباشد. در این حرکت علمی به روشهای علمی برای ساخت دست پیدا کردهاند که در روشهای مکانیکی معمول امکان ساخت آن غیرممکن است محدوده ساخت آنها بین میلی متر و زیرمیکرومتر واقع میشود.
سنسورهای در بعد حرارت:
در بعد حرارت یکی از مهمترین کمیتهای فیزیکی میباشد
سنسورهای حرارتی اینترفیس:
این نوع سنسور بطور عمده از وابستگ حرارتی انتقال عامل با استفاده از اتصالات p-n به پایای دیودها، ترانزیستورها یا ترکیبات ترانزیستوری بهرهبرداری میکند. اثرات اصلاح وابستگی حرارتی پلاویتة انیترفیس مخازنهای Mos با تغذیه AC نیز میتواند توسط این نوع سنسور بکار برده شود. هر دو اثر در مبدلهای حرارتی- فرکانسی بکار برده میشوند. مثالهای تجارتی از این نوع سنسور حرارتی عبارت است از انواع AD 590 (دستگاههای آنالوگ) هستند.
آنها میتوانند در حد دقتی به اندازه تقریباً 1k برای درجة حرارتهایc050- و c0150 به کار برده شوند. اگر چه پیشرفتهای دیگری در حال تجربه هستند، بیشتر آنها هنوز در مرحلة آزمایشگاهی قرار دارند، مبدلهای حرارتی فرکانسی بدلیل توانائی آن ها برای ایجاد یک سیگنال خروجی فرکانسی- آنالوگ جهت غالب دیگری از تکامل را ارائه میدهند. این مدار متشکل از تعدادی طبقات معکوس کننده با تراتزیستورهای جانبی (T1) .و عمودی (T2) میباشد ظرفیت اتصال طبقات معکوسکنندة انفرادی سبب ایجاد یک تاخیر سوپینگ میشود که، با فرض یک جریان تزریقی معین، فرکانس عملیاتی نوسانساز حلقهای را تعیین میکند که با تعداد طبقات معکوسکنندة بکار برده شده تغییر مینماید. وابستگی حرارتی VBE مستقیماً فرکانس نوسان ساز را تحت تاثیر قرار میدهد. بنابراین برای درجه حرارتهایی بین 020 و080 درجه سانتیگراد یک وابستگی مغطی بین درجه حرارت و فرکانس با یک حساسیت نسبی، به اندازهی تقریباً k 3-10 وجود دارد. اگر چه آیندة چنین سنسورهایی خوب است، ولی آنها هنوز در زمینه قیمت با رقیبان خود قادر به رقابت نیستند.
سنسورهای حرارتی سیلکونی دیگر وکاربردها:
در درجه حرارت بالا (500 الی 3000 درجه سانتی گراد) غالباً با لومتر به عنوان یک عنصر حس کننده به کاربرده میشود. در این دستگاهها درجه حرارت در نتیجهی جذب تشعشع گرمایی توسط لایههای مقاومتی افزایش مییابد. غالباً مقاومتهای لایه ای سیاه فلزی ومقاومتهای لایهای ترکیب فلز- اکسید فلز مورد استفاده قرار میگیرند.
سیلیکون اغلب به عنوان زمینه به کار میرود. ترموپیلهای مجتمع علاوه بر کاربردهای حرارتی کاربردهای دیگری نیز دارند به عنوان مثال اندازه گیری دبی سیال، آشکار سازی تشعشع ماوراء قرمز و اندازه گیری فشار خلاء از آنجایی که سیلیکان یک هادی گرمایی خوب است، روشهای حکاکی اغلب میتواند به منظور وفق دادن ضخامت و شکل ترموپیلها در کاربردهای ویژه به کار روند. آفست (offest) کم ترموپیلهای مجتمع یک مزیت بزرگ است. بالابردن سی یک سیلیون نیز یک مزین است زیرا سیلیکون دارای اثر سی بک (ضریب) بیشتری نسبت به فلزات است از این رو برای اندازه گیری دماهای جزئی مورد استفاده قرار میگیرد (در حد میکروکلوین).
سنسورهای فشار:
سنسورهای سیلیکانی در اندازهگیری فشار، توان، و شتاب دارای اهمیت زیادی هستند تاکنون معمولیترین سنسورهایی را که در این زمینه به کار برده میشد دارای اثر پیزوالکتریک بوده است. با به کارگیری مقاومتهایی که سنسورهای سیلیکونی نصب یا پخش میشوند اثر اندازهگیری شده را نتیجه میدهد.
. بعلاوه، سنسورهایی که از اثرا پیزو خازنی بهره میبرند نقش بطور فزاینده مهمی را، بویژه هنگامی که نوسانگر یا تقویتگرها میتوانند بطور یکپارچه برروی یک چیپ منفرد مجتمع شوند، بازی میکنند. سنسورهای فشار پیزو خازنی نسبت به سنسورهای پیزو مقاومتی حساستر و پایدارتر و کم متاثر نسبت به تغییرات درجة حرارت هستند. با این وجود تولید روی سادهتر و ارزانتر است. آنها در مقایسه با سنسورهای خازنی، یک مشخصة پاسخ تقریباً خطی ارائه می کنند. همچنین آمادهسازی سیگنال سادهتر است. جدیدترین طرح si چند گانه یا MOSFETهای اصلاح شده می باشد.
اثر پیزو مقاومتی:
اثر پیزومقاومتی بیانگر تغییر در مقاومت الکتریکی مادهای است که در معرض یک نیروی مکانیکی همچون کشش یا فشار قرار میگیرد
سنسورهای فشار پیزو مقاومتی:
امروزه بسیاری از سازندگان سنسورهای پیزو مقاومتی را برای رنجی بین 1mbar تا 1000 bar میسازند، که برای اندازهگیری فشار مطلق و تفاضلی مناسب هستند، آنها در مقابل بارهای زیاد حساس نیستند، با وجود این هنگامی که فشار از مقدار مجاز بالاتر روند به آسانی میشکند، همچنین باید آنها را در مقابل گرد و غبار محافظت کرد.
به این منظور سنسور را در یک کپسول ضد هوا قرار داده وو داخل آن را با روغن پر میکنند، محدودهای دمایی این سنسور بین 120 تا 125 درجه سانتیگراد است که اگر از این محدودهی دمایی بالاتر رود اتصال یونی بین آن به سادگی میشکند. اشکالاتی که این سنسور دارد در آمادهسازی سیگنال برای مدار تقویت کننده میباشد که تا حدودی به وسیلهی پردازشگرهای جدید رفع شده است. اخیراً یک سنسور فشار با سیگنال خروجی دیجیتالی با عنوان فلیپ- فلاپ NMOS آماری معرفی شده است. ساختار این سنسور که براساس یک فلیپ فلاپ نامتعادل قرار دارد توسط دو مقاومت میتواند تحت تاثیر قرار گیرد و این منجر به تغییری در خروجی پالس سنسور قرار گیرد.
اصول سنسورهای فشار جدید
تجمع بک MOSFETو یک الکترت منجر به ظهور انواع زیادی از سنسورهای جدید شده است که نمونهای از آن سنسور فشار PRESSFET میباشد. این سنسور که یک نمونه جدید از آرایش FET با یک لایة ساندویجی دی الکتریک بین گیت وسیلیکان در نظر گرفته میشود.
فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد
تعداد صفحات این مقاله 36 صفحه
پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید
دانلود مقاله بررسی سنسور ها