لینک پرداخت و دانلود *پایین مطلب * فرمت فایل :Word (قابل ویرایش و آماده پرینت ) تعداد صفحه:19
فهرست:
1- مقدمه
شبکه های عصبی مصنوعی
مفاهیم پایه در شبکه های عصبی مصنوعی
شبکه عصبی پرسپترون[1] ساده
شبکه عصبی پرسپترون چند لایه ) MLP (
3- شرح تحقیق
استفاده از دادههای ماهیانه
استفاده از دادههای روزانه
فهرست مراجع
با توجه به اهمیت و حساسیت امر مهار آبهای سطحی خصوصاً در کشور ما که اکثر رودخانههای مناطق مختلف فصلی بوده و کمبود آبی که در پهنه وسیعی از کشور وجود دارد ، نیاز به شناسایی و به مدل درآوردن رفتار رودها و شریانهای آبی جهت برنامهریزیهای بلندمدت و استفاده بیشتر و بهتر از پتانسیلهای آنها عمیقاً احساس میشود . جدیدالتاسیس بودن بیشتر ایستگاههای هیدرومتری ، نواقص موجود در آمار اکثر این ایستگاهها ، قرارگرفتن بیشتر رودها در مناطق خشک ، وضعیت بحرانی برداشت آبهای زیرزمینی و لزوم توجه بیشتر به آبهای سطحی همه و همه دلایل بیشتر و ظریفتری میباشد که به مقوله پیشبینی و تولید آمار مصنوعی در حوزههای آبریز کشورمان جلوه و نمودی کاملتر میبخشد .
روشهای متداول آماری و احتمالی بر پایه روابط و فرمولهای صرفاً ریاضی که به طور اخص به پیشبینی سریهای زمانی میپردازد ، از دیرباز مورد توجه مهندسین علوم آب قرار گرفته است . آنها با دستمایه قراردادن این بخش از علم آمار به تحلیل ، بررسی و شناخت رفتار رودخانهها میپرداختند . در این راستا نرمافزارهای مختلفی نیز تهیه وتنظیم شده که از مهمترین و بارزترین آنها میتوان SPIGOT و HEC4 را نام برد .
شبکه عصبی مصنوعی[1] نامی نوین در علوم مهندسی است که بهطور ابتدایی و آغازین درسال 1962 توسط فرانک روزن بلات و در شکل جدی و تأثیرگذار در سال 1986 توسط روملهارت و مککلند با ابداع و ارائه مدل پرسپترون بهبود یافته به جهان معرفی شد . این شیوه از ساختاری نرونی و هوشمند با الگوبرداری مناسب از نرونهای موجود در مغز انسان سعی میکند تا از طریق توابع تعریف شده ریاضی رفتار درونسلولی نرونهای مغز را شبیهسازی کند و از طریق وزنهای محاسباتی موجود در خطوط ارتباطی نرونهای مصنوعی ، عملکرد سیناپسی را در نرونهای طبیعی به مدل در آورد. ماهیت و ذات تجربی و منعطف این روش باعث میشود تا در مسائلی مانند مقوله پیش بینی که یک چنین نگرشی در ساختار آنها مشاهده میشود و از رفتاری غیرخطی و لجامگسیخته برخوردار هستند ، به خوبی قابل استفاده باشد .
2- شبکه های عصبی مصنوعی
2-1- مفاهیم پایه در شبکه های عصبی مصنوعی
یک نرون بیولوژیک با جمع ورودیهای خود که از طریق دندریتها با یک وزن سیناپسی خاص به نرون اعمال میشوند ، با رسیدن به یک حد معین تولید خروجی میکند . این حد معین که همان حد آستانه میباشد ، در حقیقت عامل فعالیت نرون یا غیر فعال بودن آن است .
با توضیحات فوق میتوان گفت که در مدلسازی یک نرون بیولوژیک به طور مصنوعی میبایست به سه عامل توجه شود :
- نرون یا فعال است یا غیر فعال
- خروجی تنها به ورودیهای نرون بستگی دارد
- ورودیها باید به حدی برسند تا خروجی ایجاد گردد]1[.
تحقیق در مورد کاربرد آمار و احتمالات در مدیریت تنش سرما و یخ زدگی