دانلود با لینک مستقیم و پر سرعت .
موضوعات خنک سازی سکو و راس
معلوم شده است که تاثیر طرح راس تیغه که قویاً نشت گاز داغ در راس را تحت تاثیر قرار می دهد، یک توزیع کننده اصلی به تاثیر آیرودینامیکی توربین های می باشد. راس های تیغه نوعاً از سطوح توسعه یافته در وضعیت های پرتویی دور از تیغه در حال گردش تشکیل شده اند که در معرض گازهای داغ در همه جهات قرار گرفته و خنک سازی آنها مشکل بوده و مورد هدف توان پتانسیل برای پوشش دهی بخاطر سایش در برابر حالت ساکن خارجی می باشند.
داده های تجربی کمی برای توزیع های انتقال حرارت در راس های تو رفته وجود دارد که برای توربینهای در حال دوران با مقیاس کامل که در حال کار در شرایطی هستند که محیط موتور واقعی را شبیه سازی می کند، به دست آمده است. به خوبی معلوم شده است که تفاوت فشار بین بخش فشار و مکش تیغه ها جریان را از طریق فاصله آزاد راس ایجاد می کند. یک راس تخت در اکثر موارد قابل قبول نمی باشد چون آسیب های شدیدی به وجود می آید که می تواند با سایش راس در مورد
طرح راس جامد، ارتباط داشته باشند. اکثر طرح های راس تیغه یک حفره مربع شکل را با دیواره نازک در راستای بخش فشار و مکش ایجاد می کند که در وضعیت سایش راس، از آسیب کمتری برخوردار است. با این وجود، حضور این حفره در راس باعث یک میدان جریان پیچیده تر از حالت ایجاد شده در یک تیغه نوک تخت می شود. در نزدیکی لبه هدایت کننده تیغه، یک جریان محدب قوی در تیغه در نزدیکی بخش ساکن وارد راس منطقه می شود یا از بخش سطح مکش تیغه جریان مییابد. Ameri در تحقیق عددی منطقه راس نشان داد که میدان جریان با اکثر گردابهای در حال کنش متقابل سه بعدی می باشد. این نتیجه نشان می دهد که حداقل دو منبع مجزا از گردابها در منطقه حفره وجود دارد و اینکه این گردابها در سراسر طول حفره دوام میآورد. الگو سازی آنها از این جریان نشان می دهد که یکی از گردابها ماحصل تفکیک بخش فشار لبه راس می باشد و این که این گرداب در بالای دیواره بخش فشاری حفره می چرخد. گرداب ثانویه ماحصل یک تفکیک جریان مجدد در لبه راس در بخش مکش تیغه می باشد. به نظر می رسد که یک خط تفکیک وجود دارد که در آن جریان اصلی در شکاف از بخش فشار تیغه به صورت چرخشی شروع می شود تفکیک جریان بخاطر لبه راس اتفاق می افتد. جریانات ثانویه قوی را می توان در مسیر شکاف انتظار داشت. این میتواند دارای تاثیر آوردن نسبت های بسیار داغ از گاز جریان اصلی به گرداب شکاف فاصله آزاد, جریان نزولی راس لبه هدایت کننده تیغه باشد. این نقش مثل یک مرحله خاص با تفکیک جریان حاصل و اتصال به حفره تو رفته عمل می کند. وقتی جریان از بخش مکش شکاف آغاز می شود در یک حالت محدب می چرخد چون جریان دیواره جریان در حال اجرا را تامین می کند.
یک بخش قابل توجه از آثار مرتبط با تحقیقات تجربی جریانات شکاف راس با تیغه های راس تخت سروکار دارد. توزیع های فشار استاتیک راس تیغه در یک آبشار دو بعدی توسط Bindon ارزیابی شد. او نتیجه گرفت تاثیرات شکاف فاصله آزاد و پرتو لبه بخش فشار در یک راس تخت وجود دارد. توجه خاص به تفکیک حباب شکل گرفته در ورودی راس در راستای بخش فشار شکل گرفت. همین تحقیق تاثیرات نمای عرضی شکل هندسی در آبشارهای ساکن و دورانی را با استفاده از یک پرتو لبه بخش فشاری, بخش مکش و یک خبر بر کامل را مورد خطاب قرار داد.
این تحقیق روی تاثیر نشت ها روی افت ها و عملکرد مرحله تمرکز یافت. نتیجه گیری شد که برای همه پیکر بندیهای آزمایش شده، راس تخت به بهترین شکل عمل کرده و حرکت نسبی نیز مهم بود.
یک تحقیق اخیر از تاثیرات عمق حفره آنتن در توزیع انتقال حرارت حفره راسی، از یک آبشار راس تیغه ساکن استفاده کرده و یک تیغه فشار بالا با یک توزیع فشار آیرودینامیکی واقعی استفاده کرده است. تاثیر عمق حفره در سطح حفره راسی یکنواخت نبود. مشاهده کلی این است که حفره عمیقتر ضرایب انتقال حرارت کمتر را تولید می کند. یک حفره آنتنی توخالی, بسیار نزدیک به رفتار راس تخت می باشد. یک عمق اغلب در حفره راس طرح عملی برای کاهش بار حرارت کلی تا 50% یافت میشود.
محققان متعددی روشهای کاهش افت های عملکرد را با کنترل نشت راس, مورد بررسی قرار داده اند. مخلوط کردن جریان نشت با جریان گذرگاه روتور باعث افت فشار کل شده و بازده مرحله توربین را کاهش می دهد. افت ها در طول تشکیل یک گرداب نشتی و کنش متقابل آن با گرداب گذرگاه منشا می گیرد. تحقیقات اخیراً منتشر شده از مفهوم یک توسعه سکوی راس استفاده می کند که یک بال کوتاه بدست آمده با توسعه جزئی سکوی راس در جهت مماس می باشد. استفاده از یک توسعه راس بخش فشار می تواند تا حد زیادی روی میدان آیرودینامیکی محلی با تضعیف ساختار گردابی نشت، اثر کند. تحقیقات آنها نشان داده اند که بهره کل به کل قابل توجه با استفاده از توسعه های سکوی راس ممکن می باشد.
برای کسب اطلاعات بیشتر درباره انتقال حرارت راس تیغه توربین خواننده به بررسی به تازگی منتشر شده توسط Bunher رجوع کند.
خنک سازی ساختارهای روتور و قسمت ساکن
منبع خنک سازی و سیستم های هوای ثانویه
نقش یک سیستم هوای ثانویه، که اغلب سیستم خنک سازی درونی نامیده می شود برای انتقال هوای خنک سازی به مولفه های مسیر گازی خنک شده, روتور خنک سازی و ساختارهای بخش ساکن و جلوگیری از ورود گاز داغ به حفره های درونی و نشت های درزی بین مراحل توربین می باشد. جریانهای هوای ثانویه کمبوستور بصورت مستقل از بخش توربین با استفاده از افت های فشار از طریق یک کمبوستور اصلاح می شود که با طراحان موتور معین می شود. با این وجود, مدارهای هوای ثانویه در کمبوستور و قوانین که مزدوج شده اند، از همان منبع فشار یعنی تخلیه کمپرسور، تامین میشود. به همین دلیل، اخیراً کل شبکه جریان سیستم هوای ثانویه برای ارائه پیش بینی دقیق فشار محلی و تزریقات فشار تجزیه و تحلیل شده اند. همچنین ابزار تحلیلی پیشرفته که باید شامل تاثیرات انتقال حرارت در محاسبات جریان باشند برای استفاده 3 بعدی غیر واقعی یا واقعی در الگوسازی جریان برای سیستم های خنک سازی ثانویه شروع شد.
انتقال هوای خنک سازی به مولفه خنک شده باید در کمترین افت فشار و با حداقل حرارت در مسیری به سمت مولفه, انجام شود. کمترین افت فشار در سیستم حمل و نقل برای یک لبه هدایت کننده خنک شده روش تیغه مرحله 1 بخصوص برای توربین های گاز صنعتی طراحی شده با یک افت فشار کمبوستور مهم می باشد. یک افت فشار کمبوستور 3% کل فشار تخلیه کمپوسور که اغلب در این موتورها یافت می شود به یک حاشیه فشار در سوراخ های تخلیه فیلم روش در لبه های هدایت کننده منتهی می شود.
موضوعات انتقال حرارت و جریان ثانویه در حفره های دیسک و سیستم های حمل و نقل خنک سازی تیغه نقش مهمی را در عمر و یکپارچگی ساختاری این مولفه ها ایفا می کند. سیستم حمل و نقل خنک سازی روتور و تیغه توجه خاصی را به خود معطوف داشته و تاثیر قابل توجه آن روی افت های عملکرد موتور با تخلیه هوای خنک سازی در جریان اصلی ارتباط دارد و باید در نظر گرفته شود.
برخی موضوعات با جریانات و انتقال حرارت در حفره های صفحه ارتباط دارند که در بخش بعدی بحث می شوند. حرارت حداقل برای ساختار تیغه صفحه ای مرحله 1 خنک شده, بسیار مهم است. چهار راه اصلی برای انتقال هوا از بخش ثابت توربین به تیغه ها وجود دارد.
1-برخورد هوا از بخش ساکن در جهت نرمال به بخش طوقه ای دیسک روتور توربین
2- ارائه جریان خروجی پرتویی هوای خنک سازی در حفره دیسک به طرف گذرگاههای ورودی هوای ریشه تیغه.
3-گردابی کردن هوای خنک سازی قبل از تخلیه آن در یک حفره دیسک
4-تهیه هوای نزدیک به مرکز دیسک در یک کانال شکل گرفته بین دیسک توربین و صفحه پوششی دورانی متصل به دیسک.
دو روش اولیه بندریت در مرحله اول توربین های گاز مدرن بخاطر انتخاب حرارت قابل توجه با هوا از دیسک یافت می شود و بخاطر کار مورد نیاز برای شدت یافتن هوا بصورت مماسی تا زمان هماهنگ شدن شدت جریان مماسی دیسک الزامی است.
کاربرد پروانه های گردابی, هوا در راستای مماسی را شدت میدهد و دمای نسبی هوا را کاهش داده و افت های سایشی در سیستم را به حداقل می رساند. معمولاً دمای نسبی هوای گردابی شده باید در زیر دمای طوقه دیسک مجاز, تنظیم شود. پروانه های گردابی اغلب در همان پرتو یا شعاع مشابه با ورودی ها در گذرگاههای خنک سازی تیغه در روتور قرار میگیرد. یک منبع خاص که هوای گردابی شده را تغذیه می کند, برای جلوگیری از ورود گاز داغ و کاهش مخلوط شدگی بین جریانهای خنک سازی دیسک و خنک سازی تیغه توصیه می شود.
روش چهارم از انواع گوناگون صفحات پوشش دورانی استفاده می کند که معمولاً زمانی به کار میرود که پمپاژ هوای اضافی برای تیغه ها فراهم شود بخصوص وقتی یک حاشیه فشار بالا باید فراهم شود برای مثال برای خنک سازی راس دوش تیغه. این روش سیستم حمل و نقل هوای خنک سازی را پر هزینه تر می کند ولی به نشت های درزی طوقه نسبت به سیستم های دیسک باز، کمتر حساس میباشد.
هوای خنک سازی از مراحل میانی کمپرسور اغلب برای مولفه های توربین مرحله 1 ارائه می شود. این به ارتقاء عملکرد کلی موتور با ذخیره کار فشرده سازی کمک می کند و همچنین هوای خنک سازی دارای دمای کمتری را بوجود می آورد که از یک مرحله میانی جریان می یابد. دو روش اول, که در بالا شرح داده شد، نوعاً گزینش هایی برای انتقال هوا به خنک سازی تیغه ها و دیسک های مرحله می باشد.
یک بخش کوچکی از جریان هوای درونی باید برای بافر کردن حفره های فضا گذاری حامل درزی شده طراحی شود. فشار هوا در حفره ها باید به دقت بعنوان بخشی از کل جریان درونی برای اجتناب از ورود گاز داغ, نشت های روغن در توربین و تهویه صحیح بخار نفت متوازن شود. عملکرد و دوام دراز مدت درزهای روتور به بخش ساکن اغلب برای تامین قابل اطمینان هوای خنک سازی و عملکرد کلی موتور, حائز اهمیت می باشد.
شکل 25 یک خلاصه خوب از ویژگی های جریان برای درزهای لابیرنت ارائه می دهد.