فی بوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی بوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

مقایسه ترانسفورماتورهای نوع خشک و روغنی

اختصاصی از فی بوو مقایسه ترانسفورماتورهای نوع خشک و روغنی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 5

 

مقایسه ترانسفورماتورهای نوع خشک و روغنی

دانشجو امیر سعیدی

مهندس ب. احمدزاده مهندس ز. علیجانیان

شرکت ایران ترانسفو زنجان

مقدمه:

ترانسفورماتورهای شبکه توزیع عمدتاً از نوع ترانسفورماتورهای روغنی (Oil immersed type) ، و بعضاً از نوع خشک (Dry type) می باشند تفاوت اصلی این دو نوع ترانسفورماتور در استقامت الکتریکی و حرارتی عایقهای بکار رفته در آنهاست. ترانسفورماتورهای خشک بر اساس استاندارد بین المللی IEC 60726 می توانند با سیستم عایقی کلاسهای A,E,B,F,H,C طراحی و ساخته شوند ترانسفورماتورهیا خشک مورد بررسی در این مقاله دارای عایقهایی با کلاس حرارتی F و دمای می باشند که مقدار مجاز دمای متوسط سیم پیچها است به بیان دیگر جهش حرارتی مجاز سیم پیچها در محیط استاندارد برابر 100k خواهد بود. ] 1[ در حالی که عایقهای ترانسفورماتورهای روغنی با کلاس حرارتی A دمای قابل تحمل کمتری داشته و لذا مقدار مجاز دمای متوسط سیم پیچها در محیط استاندارد می باشد. [2]

بدیهی است که این دو نوع ترانسفورماتور از دیدگاههای مختلف دارای مزایا و معایبی نسبت به یکدیگر می باشند که از جمله مهمترین مزایای ترانسفورماتور خشک ایمن بودن آن در برابر انفجار و آتش سوزی بوده و در مقابل عدم امکان تعمیر و بازسازی سیم پیچهای رزینی(Cast resin) عیب آن به شمار می رود.

همچنین ترانسفورماتورهای خشک در صورت نصب در فضای آزاد (outdoor) معمولاً درون یک محفظه (Enclosure) قرار می گیرند که می تواند سه حالت داشته باشد: بدون تنفس (Sealed) یا با تنفس (totally enclosed) و یا به صورت با گردش هوا (Enclosed) را امکان پذیر سازد. ولی برای نصب در فضای بسته (Indoor) و در صورت عدم وجود شرایط خاص نیازی به حفاظ نخواهد بود که بصورت (Non-enclosed) می باشند.

در این مقاله سعی شده تا بر اساس مدارک فنی برای محاسبه و طراحی ترانسفورماتورهای توزیع روغنی و خشک موجود در شرکت ایران ترانسفو[3] مقایسه ای از لحاظ ابعاد و اوزان بین این دو نوع ترانسفورماتور(با مشخصات یکسان) بدست آید. استاندارد مورد نظر برای ترانسفورماتورهای روغنی IEC76 و برای خشک کدرن IEC60726 می باشد.

شرح مقاله و روش تحقیق:

برای انجام این تحقیق از دانش فنی موجود در شرکت ایران ترانسفو برای محاسبه و طراحی ترانسفورماتورهای توزیع روغنی و خشک استفاده شده است. بررسی بر روی دو نمونه ترانسفورماتور سه فاز 1600kVA، 800kVA پارامترهایی که برای هر دو نوع ترانسفورماتور خشک و روغنی یکسان فرض شده عبارتند از:

1-وان (kVA) 2- نسبت تبدیل و پله های تنظیم ولتاژ 3- گروه اتصال 4- درصد امپدانس اتصال کوتاه (%) 5- فرکانس (Hz) 6- تلفات بی باری گارانتی شده (kw) 7- تلفات بار گارانتی شده (kw) 8- شرایط محیط نصب (مطابق استاندارد IEC) 9- محل نصب (Indoor)

لازم به ذکر است که برای محاسبه و طراحی این ترانسفورماتورها مقادیر تلفات ترانسفورماتورهای محاسبه شده خشک(بصورت نرمال) مبنا قرار داده شده و با در نظر گرفتن این مقادیر گارانتی برای تلفات بار و تلفات بی باری، ترانسفورماتورهای روغنی نیز طراحی گردید.

همچنین از آنجا که تلفات بی باری تابع نوع ورق هسته مصرفی می باشد لذا یک نوع ورق (M5) برای هر دو نوع ترانسفورماتور در نظر گرفته شده است و البته هر چند بر اساس مدارک فنی و در مقایسه انجام شده روش چیدن ورقها در ترانسفورماتورهای روغنی به صورت overlap و در نوع خشک بصورت step lap منظور شده است اما این مورد در مقدار تلفات بی باری تأثیر چندانی ندارد.

اما تفاوت عمده ای که در مقایسه دو طرح اجرا شده ترانسفورماتور خشک و روغنی دیده می شود جنس هادی و روش سیم پیچهای ترانسفورماتورهای خشک با فویل آلومینیومی و با مواد عایقی کلاس F طراحی شده اند. بنابراین بر اساس استانداردهای IEC 60076,IEC 60726 مقدار تلفات اتصال کوتاه و درصد ولتاژ اتصال کوتاه ترانسفورماتورهای روغنی در دمای مبنای و برای ترانسفورماتورهای خشک در محاسبه شده اند.


دانلود با لینک مستقیم


مقایسه ترانسفورماتورهای نوع خشک و روغنی

دانلود تحقیق علل سوختن ترانسفورماتورهای 66 کیلوولت شبکه برق استان فارس

اختصاصی از فی بوو دانلود تحقیق علل سوختن ترانسفورماتورهای 66 کیلوولت شبکه برق استان فارس دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق علل سوختن ترانسفورماتورهای 66 کیلوولت شبکه برق استان فارس


دانلود تحقیق علل سوختن ترانسفورماتورهای 66 کیلوولت شبکه برق استان فارس

پیشگفتار
گزارش حاضر، گزارش نهایی پروژه "بررسی علل سوختن ترانسفورماتورهای 66 کیلوولت برق فارس" می‎باشد که در آن به بررسی علل اصلی ایجاد خطا در ترانسفورماتور و منشاء ظهور آنها و روشهای پیشگیری پرداخته می‏شود.
در روال انجام پروژه مدل‎سازیهای مربوط به حالت دائمی و گذرای ترانسفورماتور و سایر اجزای پست شامل CT، PT، برقگیر، کلید و سیستم زمین مورد بررسی دقیق قرار گرفته و بهترین مدلها ارائه شده است. در ادامه بر روی دو پست نمونه تل‎بیضاء و نورآباد شبیه‎سازی حالت گذرا انجام شده و با تغییر مقاومت زمین و مقدار انرژی صاعقه مربوط به آنها بر روی ترانسفورماتورهای مذکور مورد بررسی قرار گرفته و نتایج آن در گزارش "شبیه‎سازی و بررسی اجزای اصلی پست" ارائه گردیده است.
در گزارش حاضر دلایل اصلی ایجاد خطا که منشاء آنها داخلی یا خارجی می‎تواند باشد بررسی شده است. از طرف دیگر با توجه به اطلاعات مربوط به خطاهای ترانسفورماتورهای KV66، دلایل اصلی ایجاد خطاها استخراج و روشهای پیشگیرانه توضیح داده شده است (در فصل ششم گزارش حاضر) که از این میان می‎توان به روشهای پیشگیرانه اصلی مونیتورینگ هیدروژن و آشکارسازی تخلیه جزئی اشاره نمود.



 
فهرست مطالب

پیشگفتار    2
مقدمه    1
1- خطاهای داخلی ترانسفورماتور    5
1-2- اشکالات در مدارت مغناطیسی ترانسفورماتور    6
1-2-1-اثر جریان های گردابی ناخواسته    6
1-2-2-وجود ذرات کوچک هادی    6
1-2-3-عدم متعادل شدن نقطه خنثی ترانسفورماتور    7
1-2-4-اثر هارمونیک ها در افزایش تلفات ترانسفورماتور    7
1-3- اشکالات بوجود آمده در سیم پیچ ها شامل کویل ها، عایق کاری های سیم پیچ ها و ترمینالها    8
1-3-1-اتصال کوتاه در سیم پیچ ها ناشی از محکم نبودن آنها    8
1-3-2-عدم خشک کردن کامل ترانسفورماتور    9
1-3-3-اتصالات بد بین سیم پیچ ها    10
1-3-4-نیروهای الکترودینامیکی ناشی از اتصال کوتاه    10
1-4- اشکالات در عایقهای ترانسفورماتور شامل روغن، کاغذ و عایقکاری کلی    27
1-4-2- اشکالات ناشی از ضعف عایقی کاغذ و عایقکاری کلی ترانسفورماتور    29
1-5- اشکالات ساختاری    30
2-1- مقدمه    33
2-2-خطاهای الکتریکی خارج ترانسفورماتور    34
2-2-1-صاعقه (Lightning)    34
2-استفاده از عایق غیرهمگن    41
2-2-2- اضافه ولتاژهای ناشی از قطع و وصل (کلیدزنی)    43
2-2-3- اضافه ولتاژهای ناشی از رزونانس    48
2-2-4- فرورزونانس در خطوط انتقال انرژی ولتاژ بالا    49
2-2-5- اضافه ولتاژهای موقت    49
2-2-6- جریان هجومی در ترانسفورماتورها    51
2-2-7- اتصال نادرست ترانسفورماتور و تپ چنجر    57
2-2-8- خطاهای ناشی از اضافه بار    58
2-3- خطاهای مکانیکی    59
2-3-1- اتصالات سخت لوله-شمش در پستها    59
2-3-2- در نظر نگرفتن اثرات زلزله، سیل و طوفان بر روی فونداسیون‎ها و تجهیزات پست    62
2-3-3- حمل و نقل غیر صحیح ترانسفورماتورها    63
2-3-4- نبود حفاظتهای جلوگیری کننده از ورود حیوانات    63
2-4- خطاهای شیمیایی    65
2-4-1- زنگ‎زدگی بدنه ترانسفورماتور    65
2-4-2- فرسودگی بیش از حد ترانسفورماتور به علت عدم سرویس به موقع    65
3-1- مقدمه    67
3-2- مشخصات مورد انتظار روغن ترانسفورماتور    67
3-3- نقش کاغذ در ترانسفورماتور    68
3-4- تاثیر رطوبت در خواص عایقی کاغذ    69
3-5- اثر رطوبت در روغن ترانسفورماتور    70
3-6- راههای ورود رطوبت به ترانسفورماتور و جلوگیری از آن    70
3-7- تاثیرات مخرب تضعیف مواد عایقی ترانسفورماتور    72
3-8- برنامه آزمایشهای روغن ترانسفورماتور    73
3-8-1- آزمایش روغن قبل از پرکردن ترانسفورماتور با آن    75
3-8-2- آزمایش روغن بعد از پر کردن ترانسفورماتور    76
3-8-3- آزمایش دوره ای روغن    77
3-9- تصفیه روغن ترانسفورماتور    78
3-9-1- تصفیه فیزیکی روغن ترانسفورماتور    78
3-9-2- تصفیه فیزیکی – شیمیایی روغن ترانسفورماتور    78
3-10- شرایط نمونه برداری روغن ترانسفورماتور    80
4-1- مقدمه    82
4-2- ایجاد گاز در ترانسفورماتور    82
4-2-1- ایجاد قوس الکتریکی با انرژی زیاد در داخل روغن    83
4-2-2- ایجاد قوس الکتریکی با انرژی کم در داخل روغن    83
4-2-3- گرمای بیش از حد در محلهای به خصوص    83
4-2-4- تخلیه کرونا در داخل روغن ترانسفورماتور    83
4-2-5- تجزیه عایق ترانسفورماتور در اثر گرما    84
4-3- حلالیت گازها در روغن ترانسفورماتور    84
4-4- مقادیر مورد نیاز برای آنالیز گازها    84
4-5- مراحل آزمایش روش گاز کروماتوگرافی جهت مشخص کردن نوع خطا    86
4-6- حلالیت گازها در روغن ترانسفورماتور    88
4-7- خرابی عایق سلولزی ترانسفورماتور (کاغذ ترانسفورماتور)    88
4-7-1- امتحان غلظت   و   حل شده در روغن    88
4-7-2- امتحان غلظت Co2 و Co در گازهای آزاد بدست آمده از رله های جمع آوری گاز    88
4-8- کاربرد روش تحلیلی در گازهای آزاد درون رله های جمع آوری گاز    88
4-9- محاسبه غلظتهای گاز حل شده معادل در روغن ترانسفورماتور با غلظتهای گاز آزاد    88
4-10- روش تشخیص خطا با استفاده ازگازهای حل شده و حل نشده در روغن ترانسفورماتور    88
4-10-1- تعیین نرخ رشد گازها    88
4-10-2- ارائه فلوچارت تصمیم گیری    88
4-10-3- تعیین زمانهای آزمایش گاز کروماتوگرافی روغن    88
4-10-4- تشخیص نوع خطا با استفاده از گازهای متصاعد شده    88
4-10-5- تشخیص نوع خطا با استفاده از نسبت گازهای متصاعد شده    88
فصل پنجم    89
روشهای شناسایی محل خطا در ترانسفورماتور    89
5-1- روشهای غیر الکتریک تعیین خطا    88
5-1-1- طبیعت صوت    88
5-2-2- انواع سیستمهای آکوستیکی    88
5-3- روشهای الکتریکی تعیین محل خطا    88
5-3-1- مانیتورینگ وضعیت ترانسفورماتور در حال کار با استفاده از روش آزمون ضربه ولتاژ پایین LVI    88
5-3-2- عیب یابی ترانسفورماتور‏های قدرت با استفاده از روش تابع انتقال    88
  عیب یابی در محل    88
5-3-3- روش آشکار سازی بر اساس تخلیه جزئی    88
سیستم GULSKI AND KREUGER    88
-آنالیز با استفاده از روش مونت کارلو یا سیستم HIKITA    88
6- خطاهای بوجود آمده در ترانسفورماتورهای 66 کیلوولت برق فارس……………………144
مقدمه : آشنایی با صنعت برق در استان فارس تا سال 1378    88
6-1- آمار حوادث منجر به ایجاد خطا و یا خروج ترانسفورماتور از شبکه………………
    ضمیمه 1    88
    ضمیمه 2…………………………………………………………………....235

 


فهرست اشکال

شکل (1-1): خطا در نگهدارنده فلزی سیم پیچ به واسطه اتصال کوتاه درونی    8
شکل (1-2):خرابی پایین سیم پیچ فشار ضعیف بواسطه ورود رطوبت    9
جدول (1-1): مقادیر ضریب     14
شکل  (1-3): ضریب پیک جریان اتصال کوتاه    16
شکل (1-4): اثر نیروهای اتصال کوتاه بر سیم پیچ متقارن    17
شکل (1-5): تغییر شکل حلقه های درونی و تعداد جدا کننده ها    20
شکل (1-6): تاثیر نیروی اتصال کوتاه بر سیم پیچ غیر متقارن    24
شکل (1-6): تغییر شکل در اثر تنش فشاری    25
شکل (1-7): تغییر شکل توسعه یافته در طول سیم پیچ    26
شکل (1-8): کج شدن هادیهای سیم پیچی در اثر نیروی محوری    26
شکل (1-9): تاثیرات اتصال کوتاه خارجی روی سیم پیچ    27
شکل (2-1)-شکل موج استاندارد ضربه صاعقه    37
شکل (2-2): مدار معادل ترانسفورماتور هنگام برخورد ضربه صاعقه    38
شکل (2-3): توزیع ولتاژ ضربه بر حسب  های مختلف    40
شکل (2-4): شیلد الکترواستاتیک برای یکنواخت کردن توزیع ولتاژ    41
شکل (2-5): توزیع ولتاژ در ترانسفورماتور بر حسب زمان پیشانی موج ضربه    41
شکل (2-6): شکل موج ضربه اصابت شده    42
شکل (2-7): شکل موج ضربه استاندارد قطع و وصل    44
شکل (2-8): قطع جریان توسط کلید در بارهای اندوکتیو کم    46
شکل (2-9): منحنی شارهای مغناطیسی در هسته    54
شکل (2-10)-منحنی مغناطیسی هسته    55
شکل (2-11): دمای نقاط ترانسفورماتور بر حسب دمای محیط    59
شکل (2-12): یک نمونه از اتصالات لوله‎ا‎ی ترانسفورماتور    60
شکل (2-13): اتصالات اصلاحی لوله    61
شکل (2-14): شکل مناسبی از اتصالات لوله به همراه سیم    62
شکل (2-15)-نصب عایق بر روی شینه‎ها در پست    64
شکل (3-1) : رابطه درجه پلیمریزاسیون با طول عمر کاغذ    71
فرسودگی حالت ایده آل    71
عمر طبیعی    71
شکل (3-2) : تاثیر عمل استخراج آب و اسید از روغن ترانسفورماتور بر طول عمر کاغذ    72
 فرسودگی حالت ایده ال    72
    عمر طبیعی    72
شکل (4-2) : فلوچارت تعیین نوع خطا با استفاده از گازهای حل شده و حل نشده در روغن    88
شکل (4-3) : شناسایی نوع خطا با توجه به گازهای متصاعد شده    88
شکل (4-4) : فلوچارت روش تشخیص خطا به روش DOERNENBURG    88
شکل (4-5) : فلوچارت روش تشخیص خطا به روش ROGER    88
شکل (5-1)-مسیر انتشار صوت    88
شکل (5-2)-معادل شدت صوت و مدار الکتریکی    88
شکل (5-3)-مدار میکروفون خازنی    88
شکل (5-4): مکان یابی منشا پالسهای فراصوتی در هوا به وسیله یک میکروفن فراصوتی    88
شکل(5-5): مکان یابی نستباً دقیق تخلیه جزیی با استفاده از یک هدایتگر ساده موج    88
شکل (5-6): فرم شماتیکی از سیتم مکان یاب صوتی پالسهای تخلیه جزئی    88
شکل (5-7): نشکل شماتیک مدار أشکار ساز صوتی تخلیه جزئی در روغن ترانسفورماتور    88
شکل (5-8): ولتاژ و جریان نمونه ضبط شده    88
شکل (5-9)-اندازه‎گیری ادمیتانس بر روی ترانسفورماتور سه فاز    88
شکل (5-10): مقایسه اندازه‎گیری ادمیتانس توسط اندازه‎گیری مستقیم ولتاژ در C-TAP    88
شکل (5-11): مدل دو قطبی در نظر گرفته شده برای ترانسفورماتور    88
شکل (5-12): عیب یابی در محل برای ترانسفورماتورهای قدرت    88
شکل (5-13): ارزیابی آزمون اتصال کوتاه یک ترانسفورماتور MVA125 با روش تابع تبدیل    88
شکل (5-14): تابع تبدیل دو ترانسفورماتور مشابه MVA125    88
شکل (5-15): استفاده از خواص تقارنی در ترانسفورماتور قدرت MVA125    88
شکل (5-16): شبیه سازی تجربی تغییر شکل شعاعی سیم پیچی تپ ترانسفورماتور MVA200    88
شکل (5-17): شبیه سازی تجربی انتقال محوری دو سیم پیچ استوانه‎ا‎ی    88
شکل (5-18 ): مدار اصلی آشکار سازی الکتریکی تخلیه جزیی    88
شکل (5-19 ): نحوه قرار گرفتن امپدانس آشکار ساز    88
شکل (5-20)- اجزاء مدار آشکار ساز مستقیم تخلیه جزئی    88
شکل (5-21)-بلوک دیاگرام قسمت آنالوگ    88
شکل (5-22)- بلوک دیاگرام مدار دنبال کننده پالس (PTC)    88
شکل (5-23)-. تجهیزات اندازه گیریهای توزیع دامنه تخلیه جزئی    88
شکل (5-24)- بلوک دیاگرام قسمت دیجیتال    88
شکل (5-25) مدار استفاده شده در سیستم GULSKI    88
مشخصه های   و   برای یک حفره دایروی    88
مشخصه های   و   برای یک حفره در تماس الکترود    88
مشخصه های   و   برای یک حفره باریک    88
مشخصه های   و   برای      حفره های چند گانه    88
مشخصه های   و   برای یک حفره مسطح    88
شکل (5-26)- مشخصه تخلیه جزئی اندازه‎گیری شده    88
مشخصه های   و   برای تخلیه سطحی در هوا    88
مشخصه های   و   برای تریینگ روی یک هادی    88
مشخصه های   و   برای یک حفره به همراه تریینگ    88
شکل (5-26)-مشخصه‎های تخلیه جزئی اندازه‎گیری شده (ادامه)    88
شکل (5-27)-  مدار تست برای اندازه گیریهای تخلیه جزئی در سیستم مونت کارلو    88
شکل (5-28)- سنسور خازنی در داخل باس داکت    88
شکل (6-1): روند گسترش ظرفیت ایستگاه های فوق توزیع    88
شکل (6-2): تولید انرژی برق به تفکیک مناطق در سال 1378    88
شکل (6-3): تبادل انرژی شرکت های برق منطقه ای در سال 1378    88
شکل (6-4): تعداد و ظرفیت ترانس های کل کشور به تفکیک ولتاژ در پایان سال 1378    88
شکل (1): گازهای تشکیل شده ناشی از تجزیه روغن ترانس    88
ضمیمه 2 ……………………………………………………….………………
شکل (1): گازهای تشکیل شده ناشی از تجزیه روغن ترانس………………………………169
شکل (2): فلوچارت روند عملکرد به منظور تعیین وضعیت ترانس    88
شکل (3): ارزیابی گازهای کلیدی    88
شکل (4): فلوچارت روش DOERNENBERG    88
شکل (7): فلوچارت روش ROGERS    88
شکل(6):مثلث DURVALبه منظور تعیین نوع خطا    88
شکل (7): آشکارساز هیدروژن موجود در روغن    88
شکل(8):اصول کار سنسورهیدران    88
شکل (9): شمایی دیگر از اصول کار سنسور هیدران    88
شکل (10): افزایش ناگهانی هیدروژن در ترانس MVA370 و KV230/735    88
شکل (11):مقدار هیدروژن در یک رآکتور شانت KV735    88
شکل (12): نرخ افزایش هیدروژن در ترانس KV8/13/500    88
شکل (13): تغییر هیدروژن در ترانس KV4/21 و MVA300    88
شکل (14): نمونه‌برداری از گاز با سرنگ    88
شکل (15): نمونه‌برداری از گازهای آزاد به روش جابجایی روغن    88
شکل (17): نمونه‌برداری از روغن با سرنگ    88
2شکل (18): اولین روش آماده‌سازی استاندارد گاز    88
شکل (20): نمونه‌ای از دستگاه STRIPPER    88
شکل (22): محل‌های نصب سنسور هیدران    88
شکل (23): نحوه نصب سنسور هیدران    88
ضمیمه 1…………………………………………………………………………
شکل (1): رله‎گذاری دیفرانسیلی درصدی برای حفاظت ترانسفورماتور    88
شکل (2): حفاظت دیفرانسیلی یک ترانسفورماتور    88
شکل (3): حفاظت دیفرانسیل ترانسفورماتور سه پیچه    88
شکل (4): ساختمان داخلی رله بوخهولتز    88
شکل (5): نحوه اتصال رله جریان زیاد زمین    88
شکل(7): رله توی‏بر    88
شکل (8): انواع برقگیرهای اکسید روی    88


 
فهرست جداول

جدول (3-1) آزمایشات و مشخصات مطلوب روغن قبل از پر کردن ترانسفورماتور با آن    76
جدول (3-2) : آزمایشهای اضافی روی روغن قبل از برقدار کردن ترانسفورماتور    76
جدول (3-3) : حد مشخصات روغن برای انجام تصفیه فیزیکی    77
جدول (3-4) : حد مشخصات روغن برای انجام تصفیه فیزیکی – شیمیایی    79
جدول (4-1) : گازهای تولید شده در روغن ترانسفورماتور در اثر معایب مختلف    88
جدول (4-2) : تعیین نوع عیب حرارتی یا الکتریکی براساس نسبت گازهای حل شده در روغن ترانسفورماتور    88
جدول (4-3) : تعیین بهتر و مشخص تر نوع عیب براساس نسبت گازهای حل شده در روغن ترانسفورماتور    88
جدول (4-4) : حلالیت گازهای متفاوت در یک نوع روغن ترانسفورماتور    88
جدول (4-5) : ضرایب استوالد در  20 و  50    88
جدول (4-6) : غلظت گازهای حل شده در روغن    88
جدول (4-7) : نوع عملکرد در رابطه با نتایج آزمایش TCG    88
جدول (4-8) : نوع عملکرد در رابطه با نتایج آزمایش TDCG    88
جدول (4-9) : حد نرمال گازهای حل شده در روغن*    88
جدول (4-10) : روش تشخیص نوع خطا با استفاده از نسبت گازها به روش DOERNENBURG    88
جدول (4-11) : روش تشخیص نوع خطا با استفاده از نسبت گازها به روش ROGER    88
ضمیمه 1: ………………………………………………………………………………………
جدول (1):تجمع گازهای حل شده درون روغن    88
جدول (2):دوره‌های نمونه‌برداری برحسب سطوح TCG    88
جدول (3):دوره‌های نمونه‌برداری بر حسب سطوح مختلف TDCG    88
جدول (4):مجمع گازهای حل شده درون روغن    88
جدول (5):نسبت گازهای کلیدی در روش DOERNENBERG    88
جدول (6):نسبت گازهای کلیدی در روش ROGERS    88
جدول (7):نسبت ROGRES با جزئیات بیشتر نقاط داغ    88
جدول (8):سطوح قابل قبول گازها برحسب عمرترانس    88
جدول (9):سطوح قابل قبول گازها برحسب نوع ترانس    88
جدول (10):سطوح خطرناک گازها برحسب نوع خطا    88
جدول (11):مقادیر خطرناک اتیلن بر حسب نسبت CO2/CO    88
جدول (12):ضرایب حلالیت برای روغن نمونه    88
جدول(13):حدود مجاز به منظور آشکارسازی    88
جدول(14):صحت مقادیر گازها    88

 

 

 

شامل 281 صفحه Word


دانلود با لینک مستقیم


دانلود تحقیق علل سوختن ترانسفورماتورهای 66 کیلوولت شبکه برق استان فارس

دانلود مقاله انواع خطاهای بوجود آمده در ترانسفورماتورهای فوق توزیع و روشهای پیشگیری

اختصاصی از فی بوو دانلود مقاله انواع خطاهای بوجود آمده در ترانسفورماتورهای فوق توزیع و روشهای پیشگیری دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله انواع خطاهای بوجود آمده در ترانسفورماتورهای فوق توزیع و روشهای پیشگیری


دانلود مقاله انواع خطاهای بوجود آمده در ترانسفورماتورهای فوق توزیع و روشهای پیشگیری

 

مشخصات این فایل
عنوان: انواع خطاهای بوجود آمده در ترانسفورماتورهای فوق توزیع و روشهای پیشگیری
فرمت فایل :  word (قابل ویرایش)
تعداد صفحات : 270

این مقاله در مورد انواع خطاهای بوجود آمده در ترانسفورماتورهای فوق توزیع و روشهای پیشگیری می باشد.

 

بخشی از تیترها به همراه مختصری از توضیحات هر تیتر از مقاله انواع خطاهای بوجود آمده در ترانسفورماتورهای فوق توزیع و روشهای پیشگیری

خطاهای داخلی ترانسفورماتور
همانطور که ذکر شد اجزای اصلی تشکیل دهنده یک ترانسفورماتور عبارتند از: مدارات مغناطیسی، سیم پیچ های اولیه و ثانویه، خنک کننده ها، عایق کاری، تجهیزات تپ چنجر که هرکدام از این قسمت ها ممکن است درمعرض خرابی قرارگرفته و خطاهای کلی یا جزئی در ترانسفورماتور ایجاد نمایند
بررسی دقیق عوامل عمده خطا در داخل ترانسفورماتور و تاثیر این خطاها برکارکرد آن امکان خوبی برای ارائه روش های جلوگیری از این خطاها را بوجود خواهد آورد. عوامل عمده ایجاد کننده خطاهای داخل ترانسفورماتور را می توان به صورت زیر خلاصه نمود:
الف) اشکالات در اجزا تشکیل دهنده مدارهای مغناطیسی ......(ادامه دارد)

عدم خشک کردن کامل ترانسفورماتور
وجود رطوبت در عایق ترانسفورماتور یکی از علل عمده خطا در ترانسفورماتور می باشد. مرجع ]12[ بیان می کند که در محیط خشک عمر کاغذ ترانسفورماتور در دمای °C80، 480 سال در دمای °C90، 140 سال و در دمای °C100 به 40 سال کاهش پیدا می کند. در حالی که وقتی که کاغذ رطوبت ppm20  (روغن در این رطوبت باید تصفیه فیزیکی شود. برای اطلاعات بیشتر به فصل سوم مراجعه شود) پیدا می کند در دمای °C80، 67 سال، در دمای °C90، 30 سال و در دمای °C100 عمر آن به 15 سال کاهش پیدا  ......(ادامه دارد)

 ایجاد میدان الکتریکی شدید و ناهمگن در ترانسفورماتور
رفتار بوبین ترانسفوماتور تحت تاثیر امواج سیار موضوعی است که سالهاست مورد توجه بوده است. بر اثر عبور امواج فرکانس بالا (امواج سیار) از بوبین ترانسفورماتور، توزیع ولتاژ روی بوبین از حالت عادی خود خارج شده و توزیع غیرهمگن از ولتاژ روی بوبین قرار می‎گیرد.عایق‎بندی ترانسفورماتور یکی از پارامترهای مهم ساختمانی آن می‎باشد و قابلیت اطمینان این عایق‎بندی در برابر امواج گذرای ورودی به بوبین مسئله مهمی است که برای بررسی آن داشتن دامنه ولتاژ موج ناشی از برخورد صاعقه به ترانسفورماتور در نقاط  ......(ادامه دارد)

انواع سیستمهای آکوستیکی
با مطالعه طیف فرکانسی سیگنالهای آکوستیکی ناشی از PD در ترانسفورماتور طیف فرکانسی در حدود kHZ300-150 میباشد. محدوده فرکانسی با توجه به ضخامت عایق (کاغذ) تغییر می‏کند به بیان دیگر هر چه ضخامت کاغذ کمتر شود فرکانس بالاتر می‏رود بطور مثال در یک فاصله هوایی بدون عایق کاغذی با تخلیه جزیی PC35 فرکانس پیک برابر kHZ 140 بوده و پس از پوشش با 55 لایه کاغذ mm12 مقدار تخلیه به pc 840 رسیده و فرکانس به kHZ 70 کاهش یافته است.طیف فرکانسی نویز مغناطیسی در هسته ترانسفورماتور  ......(ادامه دارد)

حفاظت‎ دیفرانسیلی درصدی
رله‎های دیفرانسیلی درصدی برای حفاظت اتصال کوتاه ترانسفورماتورهای با قدرت بالاتر از 1 مگاولت آمپر توصیه می‎شوند. رله دیفرانسیلی باید باعث عملکرد یک رله کمکی با تنظیم مجدد دستی گردیده به طوری که همه کلیدهای قدرت ترانسفورماتورها قطع گردد و این ترانسفورماتورها از سیستم جدا شوند. دو نیاز اساسی باید توسط اتصالات رله دیفرانسیل برآورده شود. اول این که رله دیفرانسیل نباید روی بارها و یا اتصالی‎های خارجی عمل نماید و برعکس باید تحت اتصالی‎های شدید ......(ادامه دارد)

روشهای الکتریکی
بررسی میزان تخلیه جزیی عمل ترین راه جهت تشخیص وجود خطا در ترانسفورماتور است که این امر می‎تواند بصورت On-line انجام شود و وضعیت عایقی ترانسفورماتور را مشخص کند .استفاده از کوپلاژ خازنی از ساده ترین و ارزان ترین روشهای مطرح در این زمینه می باشد .
لذا در نهایت می‎توان به این نتیجه رسید که اگر چه تعدادی از ترانسفورماتور ها در بق منطقه‎ا‎ی فارس دچار خطا شده و از مدار خارج شده‎اند لیکن پیدا کردن روشی که بتوان با استناد به آن از خطاهای آتی جلوگیری نمود بسیار با اهمیت است که سعی گردیده است .موارد ایجاد خطا و روشهای پیشگیری و حفاظت ترانسفورماتور  ......(ادامه دارد)

بخشی از فهرست مطالب مقاله انواع خطاهای بوجود آمده در ترانسفورماتورهای فوق توزیع و روشهای پیشگیری

پیشگفتار
مقدمه
 خطاهای داخلی ترانسفورماتور
 اشکالات در مدارت مغناطیسی ترانسفورماتور
اثر جریان های گردابی ناخواسته
وجود ذرات کوچک هادی
عدم متعادل شدن نقطه خنثی ترانسفورماتور
اثر هارمونیک ها در افزایش تلفات ترانسفورماتور
 اشکالات بوجود آمده در سیم پیچ ها شامل کویل ها، عایق کاری های سیم پیچ ها و ترمینالها
اتصال کوتاه در سیم پیچ ها ناشی از محکم نبودن آنها
عدم خشک کردن کامل ترانسفورماتور
اتصالات بد بین سیم پیچ ها
نیروهای الکترودینامیکی ناشی از اتصال کوتاه
 اشکالات در عایقهای ترانسفورماتور شامل روغن، کاغذ و عایقکاری کلی
 اشکالات ناشی از ضعف عایقی کاغذ و عایقکاری کلی ترانسفورماتور
 اشکالات ساختاری
 مقدمه
خطاهای الکتریکی خارج ترانسفورماتور
صاعقه (Lightning)
استفاده از عایق غیرهمگن
 اضافه ولتاژهای ناشی از قطع و وصل (کلیدزنی)
 اضافه ولتاژهای ناشی از رزونانس
 فرورزونانس در خطوط انتقال انرژی ولتاژ بالا
 اضافه ولتاژهای موقت
 جریان هجومی در ترانسفورماتورها
 اتصال نادرست ترانسفورماتور و تپ چنجر
 خطاهای ناشی از اضافه بار
 خطاهای مکانیکی
 اتصالات سخت لوله شمش در پستها


دانلود با لینک مستقیم


دانلود مقاله انواع خطاهای بوجود آمده در ترانسفورماتورهای فوق توزیع و روشهای پیشگیری

تحقیق در مورد ترانسفورماتورهای سازگار با هارمونیک

اختصاصی از فی بوو تحقیق در مورد ترانسفورماتورهای سازگار با هارمونیک دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد ترانسفورماتورهای سازگار با هارمونیک


تحقیق در مورد ترانسفورماتورهای سازگار با هارمونیک

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

تعداد صفحه2

فهرست مطالب

ترانسفورماتورهای  مقاوم عامل     K

 

 

 

ترانسفورماتور HMT ( Harmonic Mitigating Transformer ) 

 

مزایای ترانسفورماتورHMT  :

 

هارمونیک های تولید شده توسط بارهای غیر خطی می توانند مشکلات حرارتی و گرمائی خطرناکی را در ترانسفورماتورهای توزیع استاندارد ایجاد نمایند . حتی اگر توان بار خیلی کمتر از مقدار نامی آن باشد ، هارمونیک ها می توانند باعث گرمای بیش از حد و صدمه دیدن ترانسفورماتورها شوند . جریان های هارمونیکی تلفات فوکو را بشدت افزایش می دهند . بهمین دلیل سازنده ها ، ترانسفورماتور های تنومندی  را ساخته اند تا اینکه بتوانند تلفات اضافی ناشی از هارمونیک ها را تحمل کنند . سازنده ها برای رعایت استاندارد یک روش سنجش ظرفیت، بنام عامل   Kرا ابداع کرده اند . در اساس عامل  K نشان دهنده مقدار افزایش در تلفات فوکو است . بنابراین ترانسفورماتور عامل  Kمی تواند باری به اندازه ظرفیت نامی ترانسفورماتور را تغذیه نماید مشروط براینکه عاملK بار غیر خطی تغذیه شده برابر با عامل K ترانسفورماتور باشد . مقادیر استاندارد عامل K برابر با 4 ، 9 ، 13 ، 20 ، 30 ، 40 ، 50 می باشند. این نوع ترانسفورماتورها عملا" هارمونیک را از بین

 


دانلود با لینک مستقیم


تحقیق در مورد ترانسفورماتورهای سازگار با هارمونیک

تحقیق در مورد مقایسه ترانسفورماتورهای نوع خشک و روغنی

اختصاصی از فی بوو تحقیق در مورد مقایسه ترانسفورماتورهای نوع خشک و روغنی دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد مقایسه ترانسفورماتورهای نوع خشک و روغنی


تحقیق در مورد مقایسه ترانسفورماتورهای نوع خشک و روغنی

لینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

  

تعداد صفحه5

 

مقایسه ترانسفورماتورهای نوع خشک و روغنی

دانشجو امیر سعیدی

مهندس ب. احمدزاده                   مهندس ز. علیجانیان

شرکت ایران ترانسفو زنجان

  • مقدمه:

ترانسفورماتورهای شبکه توزیع عمدتاً از نوع ترانسفورماتورهای روغنی (Oil immersed type) ، و بعضاً از نوع خشک (Dry type) می باشند تفاوت اصلی این دو نوع ترانسفورماتور در استقامت الکتریکی و حرارتی عایقهای بکار رفته در آنهاست. ترانسفورماتورهای خشک بر اساس استاندارد بین المللی IEC 60726 می توانند با سیستم عایقی کلاسهای A,E,B,F,H,C طراحی و ساخته شوند ترانسفورماتورهیا خشک مورد بررسی در این مقاله دارای عایقهایی با کلاس حرارتی F و دمای  می باشند که مقدار مجاز دمای متوسط سیم پیچها  است به بیان دیگر جهش حرارتی مجاز سیم پیچها در محیط استاندارد برابر 100k خواهد بود. ] 1[ در حالی که عایقهای ترانسفورماتورهای روغنی با کلاس حرارتی A دمای قابل تحمل کمتری داشته و لذا مقدار مجاز دمای متوسط سیم پیچها در محیط استاندارد  می باشد. [2]

بدیهی است که این دو نوع ترانسفورماتور از

 

 


دانلود با لینک مستقیم


تحقیق در مورد مقایسه ترانسفورماتورهای نوع خشک و روغنی