فی بوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی بوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود مقاله کامل درباره ریخته گری (کاربرد – مزایا و...)

اختصاصی از فی بوو دانلود مقاله کامل درباره ریخته گری (کاربرد – مزایا و...) دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله کامل درباره ریخته گری (کاربرد – مزایا و...)


دانلود مقاله کامل درباره ریخته گری (کاربرد – مزایا و...)

 

 

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل: Word (قابل ویرایش و آماده پرینت)

تعداد صفحه :178

 

بخشی از متن مقاله

تعریف ریخته گری:

ریخته گری یکی از روشهای ساخت و شکل دادن فلزات است.

 در این روش یک فلز یا آلیاژ ابتدائاً ذوب شده و در درون یک محفظه تو خالی بنام قالب که تقریباً به شکل قطع ساخته شده ریخته می شود، بنحوی که پس از پایان انجماد شکل، ابعاد، ترکیب شیمیای و خواص مورد نظر بدست آید.

مراحل ریخته گری:

طراحی مکانیکی طرح مدل سازیانتخاب روش مناسب

طراحی ریخته گری

قالبی که برای ساخت ماهیچه استفاده می شود.

ساخت قالب و ماهیچه

 ریخته گری عملیات تخلیه و تمیز کاری( عملیات     حرارتی و ساچمه زنی و…)  بازرسی و آزمایش قطعات بسته بندی و ارسال   

ذوب فلز

تعریف ریخته گری

ریخته گری یکی از روشهای شکل دادن قطعات فلزی است که شامل تهیه مذاب از فلز مرد نظر و ریختن آن در محفظه ای بنام قالب است، به گونه ای که پس از انجماد مذاب، شکل، اندازه و خواص مورد نظر تامین شود. بنابراین با توجه به این تعریف یک فرآیند ریخته گری را باید مجموعه ای از عملیات ذوب، تهیه قالب و ریختن مذاب دانست بطور کلی مراحل ریخته گری یک قطعه قلزی به طور ساده در ذیل نشان داده شده است.

تاریخچه ریخته گری:

براساس تحقیقات باستان شناسان، ریخته گری فلزات، یک تکنولوژی ماقبل تاریخ بوده و قدمتی شش هزار ساله دارد.

اولین اشیای ساخته شده از فلزات بصورت قطعات کوچک چکش کاری شده از مس هستند که قدمت آنها به هزار سال قبل از میلاد مسیح می رسد.

از نقطه نظر تاریخی، ریخته گری را می توان به چند دوره تقسیم نمود که در اینجا بشرح آنها به اختصار می پردازیم.

دوره برنز ( مس و مفرغ)

این دوره در خاور نزدیک و در حدود 3000 سال قبل از میلاد مسیح آغاز شده اولین اشیای برنزی کشف شده بصورت آلیاژی از مس و آرسنیک ( حدود 4 درصد) بوده است.

موضوع مهم در این دوره، پی بردن به تأثیر قلع بر خواص مس است که باعث افزایش استحکام و سختی آن می شود. این موضوع هنوز در پرده ای از ابهام است. زیرا نه سنگ معدن مس حاوی قلع بوده و نه اینکه معدن مس و قلع نزدیک هم قرار دارد که آلیاژ شدن آنها بطور اتفاقی امکان پذیر باشد.

در ارتباط با چگونگی پیدایش ریخته گری، میتوان اینگونه تحلیل کرد که با توجه به اینکه پتک کاری قبل از ریخته گری مورد استفاده بشر قرار گرفته است، ممکن است در هنگام تپک کاری عمل ذوب بطور اتفاقی صورت گرفته باشد که با مشاهده این امر موارد ذیل در ذهن بشر القا شده است:

-مذاب باید در محفظه ای ریخته شود تا شکل پیدا کند.

- برای تهیه مذاب باید کوره های تپک کاری بگونه ای تغییر یابد که همواره تهیه مذاب در آن امکان پذیر باشد.

- برای تهیه مذاب و نگه داری آن باید ظرفی نسوز تهیه کرد ( بوته)

با توجه با اینکه بشر قبلاً به نسوز بودن بعضی از خاکها پی برده و نیز به دلیل آشنایی با حرفه سفالگری، به نحوه شکل دادن خاک نیز دست یافته بود، لذا به نیازهای اول و سوم او پاسخ داده شد. نیاز دوم یعنی ساخت کوره های ذوب نیز احتمالاً با سنگ چین و گل اندود نمودن و قرار دادن محلی برای عبور هوا برآورده شد.

از مسائل مهم در این ارتباط موضوع و مش بود که این امر به تبدیل سیستم دم از حالت فوت کردن به استفاده از کسیه دم و سپس به موتورهای تنظیم هوا و فشار مناسب که امروزه کاربرد فراوانی دارد منتهی شد.

بطور کلی در دوران مفرغ، ساخت قطعاتی نظیر تبر، نیزه، کارد، سپر، ظروف و شیشه و نیز ساخت آلیاژ هایی از عناصری نظیر قلع ( تا 18 درصد) و سرب ( تا 11 درصد) و آرستیک و روی معممل بوده است.

دوره آهن:

براساس کاوش باستان شناسان در چین قطعاتی چون مربوط به 600 سال قبل از میلاد مسیح بدست آمده است اما پیدایش آهن به عنوان یک دوره به دو هزار سال قبل از میلاد مسیح می رسد.

نام آهن در زبان پهلوی به عنوان آلیسن در زبان آلمانی آیزن و در انگلیسی آیرن نامیده می شود و احتمالاً در هنگام ذوب مس به آن پی بردند.

در هر حال در حدود 1200- 1000 سال قبل از میلاد آهن تقریباً ماده اصلی اغلب سلولها و ابزارها را تشکیل می داد.

با توجه به نقطه ذوب بالا ( 1539 بدیهی است که ذوب مستقیم آهن تا قرن نوزدهم میلادی امکانپذیر نبود ولی در اواسط دوره آهن بر اثر افزایش کربن و پائین آمدن نقطه ذوب ( در چدنها) قطعات ریخته گری نیز بوجود آمد.

نکته مهم دیگر کشف عملیات حرارتی بر روی آهن بود که از اهمیت خاصی برخوردار است. در مصر شمشیری و تبری با پوشش خاک نسوز بدست آمده که لبه آن حاوی 9 .0 درصد کربن و قسمتهای میانی آن تقریباص فاقد کربن است.

در این اشیاء سختی در قسمت میانی معادل 70 BHN و در قسمت لبه معادل  440 BHN می باشد البه در این دوره جدیدی در آلیاژ های مس نیز بوجود آمده و آلیاژ های مختلفی از مس و قلع ساخته شد.

از آلیاژهای دیگر ساخته شده در اواخر این دوره آلیاژ برنج ( مس و روی) و نیز بنجهای قلع دار است. پیدایش روشهای جدید ریخته گری و قالبگیری را نیز باید از دیگر تحولات دوره آهن دانست در این دوره شواهدی وجود دارد که از قالبهای سرامیکی نیز استفاده بعمل آمده است.

از عجایب این دوره ساخت مجسمه رودیس است که در سال 290 قبل از میلاد ساخته شد و جزء عجایب هفتگانه محسوب می شود.

این مجسمه 32 متری که از قطعات مختلف برنز ریختگی ساخته شده و وزنی حدود 390 تن داشت، طی زمین لرزه ای در دریای مدینترانه غرق شد.

دوره تاریک صنعتی:

در سده های سوم و چهارم بعد از میلاد تا قرن چهاردهم میلادی یک دوره رکود در صنایع و از جمله ریخته گری بوجود آمد.

البته، با توجه به حاکمیت کلیسا و تزئینات آن نظیر ناقوس و شمعدانی روشهای جدیدی در ریخته گری ابداع شد. ( قالب گری با فرمان)

 

دوره رنسانس صنعتی:

این دوره از سال 1500 میلادی تا 1700 میلادی بطول انجامید. در این دوره صنعت توپ ریزی بنا نهاده شد. ابتدا لوله هیا توپ از برنز و سپس از چدن ساخته شد.

در این دوره علاوه بر تکامل کوره ها و سیستمهای دمشی، از نظر مواد اولیه باید آغاز استفاده از ماسه و روش قالبگیری در ماسه محسوب کرد.

ظهور چدن و فولاد به عنوان مواد اولیه در ساخت قطعات و لوازم دفاعی و خانگی و همچنین استفاده از آلیاژ های متفاوت مس نظیر برنز و برنج و عناصر دیگر و استفاده از طلا در ساخت زینت آلات و قطعات تزئینی از مظاهر دیگر این دوره است.

در این دوره متالوژی بعنوان یک علم مستقل، پیشرفت کرد و نظریه ساختاری بطوری فلزات و سایر مواد توسط هارلکویکر ( Harsoeker) فرانسوی اعلام شد.

قرن هفدهم قرن دستیابی به ابزاری جدید بنام میکروسکوپ بود که تحولی جدی در علم متالوژی ایجاد کرد.

دوره انقلاب صنعتی:

یکی از تعاریف انقلاب صنعتی اینست که حداقل 50 درصد تولید هر ماه از خانه یا کارگاههای کوچک به کارخانه منتقل شد.

 انگلستان سال 1750 را آغاز انقلاب صنعتی می داند و علت آن را استفاد از کک بجای زغال چوب بیان می کنند.

اولین کوره همراه با سوخت کک در سال 1709 میلادی آغاز بکار کرد. ابراهام دارابی درسال 1777 اولین کوره بلند خود را برای ذوب و احیای سنگ معدن آهن بکار انداخت.

علاوه بر نوع کوره، روش و  استفاده از دهنده های بهتر ( استفاده از دمنده هایی که با موتور بخار کار می کردند)، اطلاعات کافی از وجود واکنش های گرما زا میان هوا و سوخت راباید از عوامل اصلی دیگر در تحول و تکامل ریخته گری محسوب کرد.

روشهای تولید قطعات:

در تهیه قطعات صنعتی هر چند ریخته گری بدلیل ویژگی های آن از نقطه نظر تکنولوژی و جنبه‌های اقتصادی به عنوان یک روش مهم و اساسی مطرح است، با این وجود برای بدست آوردن شناختی واقعی و همه جانبه، لازمست  تا ویژگیهایی این روش در کنار سایر روشهای موجود در تولید قطعات مورد بررسی و اندیابی قرار گیرد.

بطور کلی روشهای اصلی شکل دادن فلزات را علاوه بر ریخته گری به چهار گروه عملیات مکانیکی، اتصالی، ماشینکاری و متالوژی پودر تقسیم می نمایند.

عملیات مکانیکی با روش مکانیکی شکل دادن ، Mechanical procen

در این عملیات مواد جامد فلزی موسوم به شمش تحت روشهایی نظیر چکش کاری یا تپک کاری، نورد و اکستروژن ( فشار کاری) شکل داده می شود.

در حقیقت در این روش ها یک قطعه فلزی تحت تأثیر ضربه یا نیروی اعمالی تغییر شکل پلاستیک می دهد.

این شکل دادن با توجه به جنس فلز و شرایط کاربردی آن ممکن است به صورت سرد یا گرم انجام شود.

هر گاه کار مکانیکی در درجه حرارتهای پانیمتر از 3/1 نقطه ذوب بر حسب درجه کلوین انجام شود به آن کار سرد گویند، در حالیکه انجام کار مکانیکی در درجه حرارتهای بالاتر از حد ذکر شده، کارگر نامیده می شود.

همانطور که قبلاً نیز ذکر شده مهمترین روشهای مکانیکی شکل دادن شامل:

1) آهنگری، یا تپک کاری (Forging)

2) نورد Rolling

3) اکستروژن Extrusion

اکستروژن

در هر حال، نقطه شروع در تولید یک قطعه از طریق هر یک از روشهای ذکر شده تهیه ماده اولیه یعنی شمش فلز مورد نظر از طریق ریخته گری است.

قابل ذکر است که این روش تها به فلزاتی اختصاص دارد که دارای قابلیت شکل پذیری باشند. بعنوان مثال بسیاری از موارد صنعتی و بخصوص چدنها که قسمت اعظم مواد اولیه و آلیاژ های صنعتی را تأمین می کنند. از طریق مکانیکی امکان شکل پذیری ندارند
(  بخشی از انواع آن) محصولات نهایی تولید شده در این روشها، شکلهای اولیه یا نیمه تمام استاندارد شده از قبیل ورق، صفحه، مفتول، سیم، پروفیل و لوله و … است.

محدودیت ها  و مزایا:

- روشهای نورد و اکستروژن فقط برای مقاطع یکنواخت و ساده باطری زیاد استفاده می شود.

- روش آهنگری از نظر سطوح و سوراخهای داخلی محدودیت دارد

- هزینه تجهیزات بالاست.

  • خواص مکانیکی در قطعات تولیدی به روشهای مکانیکی بالاتر از قطعات ریخته گری شده است.

2) روشهای اتصالی

در این روش قطعات بزرگ از بهم متصل کردن قطعات کوچکتر ساخته می شود. که شامل عملیات جوشکاری، لحیم کاری، پیچ و مهره و پرچ کردن می باشد.

2-1) عملیات جوشکاری Welding procem

 این روش عبارتست از تهیه قطعات صنعتی از طریق جوش دادن اجزای کوچکتری که توسط روش های دیگر ساخته شده اند.

هر چند که جوشکاری فلزات را از نظر تکامل و وسعت عمل نمی توان با روش ریخته گری مقایسه کرد ولی با این وجود در بسیاری جهات شباهتهایی میان آنها وجود دارد.

بطور کلی اساس تولید قطعات در انواع روشهای جوشکاری، ایجاد منطقه ذوب در میان دو قعطعه ای است که باید بهم متصل شوند وشرط اصلی اتصال اتمی و مولکولی آن دو قطعه به یکدیگر است.

امروزه روشهای متنوعی از جوشکاری وجود دارد که جوشکاری قوسی، اکس استیلن، نفوذی و جوشکاری، گاز آرگون از آن جمله است.

قابل ذکر اینکه در روش جوشکاری، استحکام قطعات متصل شده، هیچگاه قابل مقایسه با قطعات یکپارچه نیست و بهمین دلیل این روش بعنوان یک روش تکمیلی ( تمام کننده) در تولید قطعات صنعتی شیار می رود.

محدودیت ها:

1) جوشکاری همه فلزات راحت نیست مثل آلیاژ های آلومنییم، چدن داکتیل و فولادهای آلیاژی و …

2) جوش معمولاً نقطة ضعیف قطعه محسوب می شود. بخاطر وجود تنش بالا در محل جوش و یا ورود کک و ناخالصی در اثر جوشکاری

3) محدودیت از نظر ترکیب شیمیایی

روش ماشینکاری  Machining procem

این روش عبارتست از تولید قطعات از طریق براده برداری ( جدا سازی) از روی اجزایی یا اشکال ساده یا غیر دقیق، با استفاده از ماشینکای ابزار ( تراشکاری، فرز کاری، سوراخ کاری، اسپارک و …)

هر چند در این روش اغلب اوقات شکل قطعات ساده بطور کامل از برداه برداری فلز از روی قطعات ساده بدست می آید، با این وجود ماشینکاری یک روش تمام کننه به منظور بالابردن دقت ابعادی قطعات ساخته شده به روشهای دیگر در صنعت کاربرد فراوانی دارد.

صنعت ماشینکاری علی رغم در اختیار داشتن انواع ماشین آلات و دستگاههای متعدد و پیچیده که کاربرد آن نیازمند مهارت بالایی است. صنعت جدیدی است که در هر حال بعد از ریخته گری و آهنگری قرار می گیرد. چرا که بدون ماشینکاری، صنایع دیگر همچون ریخته گری و ماشین سازی از دقت برخوردار نبوده و شاید قسمت اعظم دستگاهها قادر به کارکردن هم نباشند ولی بدون وجود صنایع ریخته گری و آهنگری امکان ساخت هیچ ماشین و یا وسیله ای وجود ندارد.

محدودیت ها:

1) ماشینکاری قطعات با سختی بالا مشکل است. ماشینکاری چون سفید شکل است.

2) محدودیت ابعاد و هزینه تجهیزات

3) محدودیت از نظر پیچیدگی سطوح داخلی

4) پرت یا اتلاف بالای مواد

روش متالوژی پودر. Powder Metallurgy

متالوژی پودر یکی از روشهای شکل دادن فلزات است که در آن شکل، اندازه و خواص مورد نظر، در اثر تراکم کردن پودر فلزی و سپس تف جوشی ( زینتر کردن) آن ( ذوب سطحی) در درجه حرارتهای بالا حاصل می شود.

هر چند که این روش از نظر قدمت از قدمت زیادی برخوردار است ولی بعنوان یک روش تولید در مقیاس تجارتی، یکی از جدیدترین روشهاست.

امروزه پیشرفت و توسعه فراوانی در زمینه متالوژی پودر حاصل شده است و این روش طیف وسیعی از صنعت جدید را تحت پوشش خود قرار داده است که برخی از این موارد بدین شرح است.

- ساخت ابزارهای برش و تراش برای کارهایی که میزان سایش در آنها بالاست.

متن کامل را می توانید بعد از پرداخت آنلاین ، آنی دانلود نمائید، چون فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است.

/images/spilit.png

دانلود فایل 


دانلود با لینک مستقیم


دانلود مقاله کامل درباره ریخته گری (کاربرد – مزایا و...)

دانلود مقاله کامل درباره فرآیند جوشکاری

اختصاصی از فی بوو دانلود مقاله کامل درباره فرآیند جوشکاری دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله کامل درباره فرآیند جوشکاری


دانلود مقاله کامل درباره فرآیند جوشکاری

 

 

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل: Word (قابل ویرایش و آماده پرینت)

تعداد صفحه :40

 

فهرست مطالب :

عنوان                                                                  صفحه

فرایندهای جوشکاری                                             1

فرایند جوشکاری مقاومتی نقطه ای                      11

اصطلاحات و بهسازی در نحوه جوشکاری نقطه ای            21

جوشکاری مقاومتی غلطکی                       25

اصطلاحات و بهسازی برای جوشکاری مقاومتی غلطکی         28

فرایند جوش جرقه ای                          31

فرایند جوش سربه سر                          32

فرایند جوش تصادمی                           32

نکات ایمنی در جوشکاری و برشکاری                 33

 

فرآیندهای جوشکاری «مقاومتی»       Resistance    Welding                    

مقدمه و کلیات : فرآیندهای جوشکاری مقاومتی با فرآیندهای قبلی تفاوت کلی دارد .اتصال دو سطح توسط حرارت و فشار توأماً انجام می گیرد .فلزات به دلیل مقاومت الکتریکی در اثر عبور جریان الکتریکی گرم شده و حتی به حالت مذاب نیز می رسند که طبق قانون ژول حرارت حاصل با رابطه زیر تعیین می شود .Q=KRI2t                    

=I شدت جریان( آمپر) ، R مقاومت( اهم)، t زمان( ثانیه) وQ ،حرارت (ژول).

فرآیندهای قوس الکتریکی حرارت در روی کار بوسیله هدایت و تشعشع توزیع می شود اما در فرآیندهای جوشکاری مقاومتی حرارت در عرض داخلی و سطح مشترک دو ورق در موضع اتصال در اثر عبور جریان الکتریکی تولید و منتشر  می شود . جریان الکتریکی مذکور از طریق الکترودها و تماس آنها به سطح کار منتقل و یا از طریق ایجاد حوزه مغناطیسی احاطه شده در اطراف کا به قطعه القاء می شود . هر چند هر دو روش بر اساس حرارت مقاومتی پایه گذاری شده است اما معمولاً نوع اول فرآیند جوشکاری مقاومتی و دومی به فرآیند جوشکاری القائی نیز مرسوم شده است .

فاکتورهای شدت جریان و زمان از طریق دستگاه جوش قابل کنترل هستند ، اما مقاومت الکتریکی به عوامل مختلف بستگی دارد از جمله : جنس و ضخامت قطعه کار ، فشار بین الکترودها ، اندازه و فرم و جنس الکترودها و چگونگی سطح کار یعنی صافی و تمیزی آن .

مقاومت 3 مقاومت تماس بین دو ورق مهمترین قسمت است. فلزات دارای مقاومت الکتریکی کم بوده بالنتیجه مقاومتهای 1و3و5 اهمیت بیشتری پیدا می کنند . مقاومتهای 2و4 بستگی به ضریب مقاومت الکتریکی و درجه حرارت قطعه کار دارد .مقاومتهای 1 و 5 ناخواسته بوده و باید حتی المقدور آنرا کاهش داد . تمیزی سطح کار و الکترود و نیروی فشاری وارد بر الکترود عوامل تقلیل دهنده این مقاومتها (1و5) می باشند .

از نظر اقتصادی لازم است که فاکتور زمان حتی المقدور کاهش یابد . که در نتیجه جریان الکتریکی لحظه ای بالا در حدود 10000 – 3000 آمپر با ولتاژ 10 – 5/0 ولت مورد نیاز است . انواع مختلف روش های جوشکاری مقاومتی به روش ایجاد مقاومت موضعی بالا و تمرکز حرارت در نقطه مورد نظر ارتباط دارد ، ولی به هر حال تماس فیزیکی بین الکترودهای ناقل جریان الکتریکی و قسمت هایی که باید متصل شوند نیز مورد نیاز است . بطور کلی فرآیندهای جوشکاری مقاومتی یکی از بهترین روش ها برای اتصالات سری است .

دستگاههای جوشکاری مقاومتی شامل دو واحد کلی است : واحد الکتریکی (حرارتی) واحد فشاری(مکانیکی) . اولی باعث بالا بردن درجه حرارت موضع مورد جوش و دومی سبب ایجاد فشار لازم برای اتصال دو قطعه لب رویهم در محل جوش است .

منبع معمولی تأمین انرژی الکتریکی ، جریان متناوب 220 یا250 ولت است که برای پائین آوردن ولتاژ و افزایش شدت جریان (به مقدار مورد لزوم برای جوشکاری مقاومتی) از ترانسفورماتور استفاده می شود .که سیم پیچ اولیه با سیم نازکتر و دور بیشتر و ثانویه با سیم کلفتر و دور کمتر (اغلب یک دور ) به الکترودها متصل است .

جریان الکتریکی از طریق دو الکترود (فک ها) به قطعه کار و موضع جوش هدایت می شود که معمولاً الکترود پائین ثابت و بالایی متحرک است .الکترود همانند گیره یا فک ها دو قطعه را دروضعیت لازم گرفته و جریان الکتریکی برای لحظه معین عبور می کند که سبب ایجاد حرارت موضعی زیر دو الکترود در سطح مشترک دو ورق می شود. جریان الکتریکی در سطح تماس باعث ذوب منطقه کوچکی از دو سطح شده و پس از قطع جریان و اعمال فشار معین و انجماد آن ، دو قطعه به یکدیگر متصل می شوند .

الکترود در فرآیند های مختلف مقاومتی می تواند به اشکال گوناگونی باشد که دارای چندین نقش است از جمله : هدایت جریان الکتریکی به موضع اتصال ، نگهداری ورقها بر رویهم و ایجاد فشار لازم در موضع مورد نظر و تمرکز سریع حرارت در موضع اتصال الکترود باید دارای قابلیت هدایت الکتریکی و حرارتی بالا و مقاومت «اتصالی» یا تماسی (contact     resistance)  کم و استحکام و سختی خوب باشد ،علاوه بر آن این خواص را تحت فشار و درجه حرارت نسبتاً بالا ضمن کار نیز حفظ کند .ازاین جهت الکترود ها را از مواد آلیاژی مخصوص تهیه می کنند که تحت مشخصه یا کد RWMA به دو گروه A آلیاژهای مس و B فلزات دیر گدار تقسیم بندی می شوند ، در جدول (1001) و (1101) مشخصات این دو گروه درج شده است .

مهمترین آلیاژهای الکترود مس ـکرم ، مس ـ کادمیم ، و یا برلیم ـکبالت  ـ مس می باشد .این آلیاژها دارای سختی بالا و نقطه انیل شدن بالائی هستند تا در درجه حرارت بالا پس از مدتی نرم نشوند ، چون تغییر فرم آنها سبب تغییر سطح مشترک الکترود با کار می شود که ایجاد اشکالاتی می کند که در دنباله این بخش اشاره خواهد شد .

همانطور که قبلاً اشاره شد قسمت هائی که قرار است بیکدیگر متصل شوند باید کاملاً برروی یکدیگر قرار داشته و در تماس با الکترود باشند تا مقاومتهای الکتریکی «تماسی» R1  وR5 کاهش یابد . مقاومت الکتریکی بالا بین نوک یا لبه الکترود و سطح کار سبب بالا رفتن درجه حرارت در محل تماس می شود که اولاً مرغوبیت جوش را کاهش می دهد (جوش مقاومتی ایدآل جوشی است که علاوه بر استحکام کافی علامتی در سطح آن ملاحظه نشود ) .

ثانیاً مقداری از انرژی تلف می شود .

روشهای مختلفی برای اعمال فشار پیش بینی شده است که دو سیستم آن معمولتر است :

الف : سیستم مکانیکی همراه با پدال ، فنر و چند اهرم

ب : سیستم هوای فشرده با دریچه های اتوماتیک مخصوص که در زمان های معینی هوای فشرده وارد سیستم می شود . این فشار و زمان قابل تنظیم و کنترل است .

در سیستم اول به علت استفاده از نیروی کارگر ممکن است فشار وارده غیر یکنواخت و در بعضی موارد که دقت زیادی لازم است مناسب نباشد، اما در مقابل ارزان و ساده است .در سیستم هوای فشرده همانطور که اشاره شد دقت و کنترل میزان فشار و زمان اعمال فشار بمراتب بیشتر است .

متن کامل را می توانید بعد از پرداخت آنلاین ، آنی دانلود نمائید، چون فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است.

/images/spilit.png

دانلود فایل 


دانلود با لینک مستقیم


دانلود مقاله کامل درباره فرآیند جوشکاری

دانلود مقاله کامل درباره اکستروژن (آلیاژها)

اختصاصی از فی بوو دانلود مقاله کامل درباره اکستروژن (آلیاژها) دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله کامل درباره اکستروژن (آلیاژها)


دانلود مقاله کامل درباره اکستروژن (آلیاژها)

 

 

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل: Word (قابل ویرایش و آماده پرینت)

تعداد صفحه :17

 

بخشی از متن مقاله

مقدمه :

اکستروژن جزء فرآیندهای شکل دهی است که درمقایسه با دیگر فرآیندهای شکل دهی ماند فورجینگ از عمر کمتری برخوردار است . الکساندر دیک (Alexander Dick) با بکارگیری فولادهای ابزار که می توانند در دماهای کاری بالا مقاومت خوبی از خود نشان دهند راه را برای اکستروژن آلیاژها باز کرد و اساس اکستروژن مدرن را بنا نهاد . کارهای اولیه در اکستروژن پودر فلزات مربوط به اواخر دهه 1950 است که به کمک آن توانستند قطعات بریلیمی مورد استفاده در نیروگاههای هسته ای با داکتیلیته کنترل شده تولید نمایند [1] . اکستروژن پودرهای آلیاژسازی مکانیکی شده برای اولین بار توسط بنجامین (Benjamin) گزارش شده است . وی سوپرآلیاژ پایه نیکل تقویت شده با اکسیدیتریم را از این طریق تولید نموده است . در کشور سوئد نیز با استفاده از اکستروژن گرم پودر فولاد زنگ نزن تیوبهای بدون درز تولید گردید [2] . درطول دو دهه اخیر توجه زیادی به توسعه مواد پراکنده سخت شده حاوی اکسید یا کاربید در آلومینیم که برای استفاده در دمای بالا مناسبند شده است [3] . با پیشرفتهای بدست آمده آلیاژهای آلومینیوم به خصوص Al-Ti جایگزین مناسبی برای آلیاژهای پایه Ni , Ti هستند [4,5] .

دو مکانیزم اصلی برای اکستروژن وجود دارد : مستقیم و معکوس شکل1  در اکستروژن مستقیم ، سنبه قطعه کار را فشار می دهد و با عبور قطعه کار از قالب، سطح مقطع آن کاهش می یابد . در اکستروژن معکوس قطعه کار نسبت به مخزن اکستروژن ثابت می ماند و اصطکاکی بین قطعه کار و محفظه اکستروژن وجود ندارد . از هردو روش می توان برای اکستروژن پودر فلزات استفاده کرد . اکستروژن پودر روشی برای تولید مقاطعی است که از سایر روشها نمی توان بدست آورد . ساخت لوله های بی درز ، سیمها و مقاطع پیچیده با اکستروژن پودر معمول است . اکستروژن پودر یک فرایند پرهزینه است اما همگن بودن محصول و یکسان بودن فرایند برای ساخت محصول در بسیاری موارد آن را یک شیوه مطلوب تولید نموده است . اکستروژن پودر می تواند موجب بهبود خواص مکانیکی آلیاژها در مقایسه با محصولات با ترکیب مشابه که با سایر روشها بدست آمده اند گردد . به عنوان مثال این امر درتولید آلیاژهای Al-Si-X دیده شده است . [6] . البته اکستروژن پودر می تواند بعنوان مرحله اولیه تولید قطعه درنظر گرفته شود و بعد از این مرحله روی قطعات ، دیگر فرآیندهای شکل دهی اعمال گردد . مثلا در یکی از تحقیقات انجام شده کامپیوزیت Al6061 تقویت شده با SiC را با اکستروژن پودر تهیه کردند و بعد به وسیله نورد آن را به شکل موردنظر در آورند و با انجام عملیات حرارتی مختلف خواص محصول را بررسی نمودند [7] .

یکی از آلیاژهایی که اخیرا به کمک متالوژی پودر تهیه می شوند و به شدت موردتوجه می باشند آلیاژها زمینه آلومینیومی هستند . البته دیگر فلزات مانند فولادهای ابزاری ، سوپر آلیاژها ، تیتانیوم ، مس ، … و آلیاژهای آنها نیز با این روش شکل داده می شوند که در ابزارسازی و هوا فضا قابل استفاده است .

تغییرشکل برشی همراه با فشار منجر به شکست لایه های اکسیدی وسایر فیلم روی سطح ذرات شده و موجب پیوندهای مناسب بین ذرات خواهد شد . بدین دلیل اکستروژن پودرهای آلومینیوم که دارای لایه های اکسیدی زیادی است یک کار مفیدی است . تحقیقات روی مواد با خواص بهبود یافته و قابل استفاده در دماهای بالا یکی دیگر از توانایی های اکستروژن پودر محسوب می شود . سیستم های فلزی همراه با فازهای پراکنده غیرفلزی شامل اکسیدها و کاربیدها و نیتریدها و یا فازهای بین فلزی از آن جمله اند . از اکستروژن پودر می توان برای تولید ماکروکامپوزیت ها و میکورکامپوزیت ها استفاده نمود جزء تقویت کننده هم می تواند حین فرآیند و توسط واکنش های متالوژیکی بوجود آید و یا اینکه به عنوان یک جزء جداگانه به مخلوط پودر اضافه شود . کامپوزیت های تقویت شده با ذرات خاص به علت استحکام ، مدول ویژه بالا ، مقاومت به سایش بهتر و پایداری حرارتی انگیزه زیادی برای توسعه و ساخت دارند . آنها را می توان از طریق ریخته گری یا متالوژی پودر تهیه نمود . روش ریخته گری یک روش ساخت نسبتا کم هزینه است اما در عین حال در این روش بین زمینه فلزی و عامل تقویت کننده واکنش دیده می شود که تا حد زیادی خواص کامپوزیت را تحت تأثیر خود قرار می دهد . استفاده از متالوژی پودر اگر چه پرهزینه تر است ولی بهبود دهنده خواص مکانیکی است [8] . علاوه بر کامپوزیت ها همراه با خواص خوب و کاربردهایشان یکدسته دیگر از موادی که می توانند تحت اکستروژن پودر قرارگیرند آلیاژهای بین فلزی اند . در گروه آلیاژهای زمینه آلومینیوم مهمترین آنها ، آلیاژ Al-Ti که به دلیل ویژگیهای خاصی که دارد به شدت موردتوجه است . درقسمتهای بعدی در این مورد بیشتر صحبت خواهد شد .

تئوری :

اکستروژن پودرفلزات یک موقعیت ویژه در تکنولوژی اکستروژن بدست آورده است که به دلایل زیر است :

- امکان شکل دادن به وسیله اکستروژن پودر موادی که ریخته گری یا کارپذیری آنها مشکل است .

- بهبود خواص و کارکرد به خاطر تصحیح ریزساختار و کمترین جدایش در فرآیندهای پودری .

- کاهش فشار اکستروژن و محدوده وسیعتر دمای کاری و سرعت سنبه نسبت به قطعات ریخته شده .

- توزیع یک نوع از ذرات درنوع دیگر به طریق مخلوط کردن پودرها .

- قابلیت ایجاد ساختارهای کار شده از پودرها بدون نیاز به سینتر شدن یا سایر عملیات حرارتی .

روشهای مختلفی برای اکستروژن پودر وجود دارد .

 در روش اول پودرخام بدون پیش گرم داخل مخزن اکستروژن می ریزند اندازه ذرات معمولا بزرگ است . این پروسه برای اکسترود کردن بیلتهای پودر آلیاژهای منگنز با اندازه دانه 70m  تا 450m انجام گرفته است . مخزن اکستروژن گرمای موردنیاز بیلتها را تهیه کرده و اکستروژن در اتسمفر محافظت شده انجام می گیرد . روش دوم بیشتر برای اکستروژن بیلتهای متراکم استفاده می شود ، پیش تراکم در این روش مفید است ، زیرا کنترل شکل اصلی قطعه راحت تر است و فشردگی قطعه بیشتر می شود و برای اکستروژن بیلتهای تهیه شده از پودر آلومینیوم استفاده می گردد . پودر به صورت سرد متراکم می شود و سپس مانند بیلتهای ریخته شده آلومینیومی اکسترود می شود چگالی بیشتر قطعه سرعت حرکت سنبه را کاهش می دهد و طول موردنیاز مخزن اکستروژن برای اکسترود کردن یک طول مشخص را کاهش می دهد . در این روش از پودری که فشرده شده است استفاده می کنند . ذرات این نوع از پودرها بصورت خشن و دندانه دار با سطح ناهموار و یا بصورت پولکی (flake) هستند .

در اغلب کاربردهای اکستروژن گرم پودر فلزات روش سوم اعمال می شود. پودر در ابتدا در داخل کپسول یا قوطی فلزی (can) ریخته می شود و مقداری فشرده   می شود این قوطی ممکن است که در خلاء بسته شود. و یا ممکن است که از یک جهت در معرض اتمسفر باشد . بعد از اینکه پودرها در داخل قوطی ریخته شد گرم می شود و سپس همراه با قوطی اکسترود می گردد . زمانی خلوص پودر می تواند باقی بماند که پودر را درون قوطی قرار دهیم و ایجاد خلاء کنیم و قوطی را ببندیم که مرحله اولیه است . پیش تراکم سازی پودرها می تواند دانستیه آنها را از 30 تا 50درصد دانستیه تئوری به 70 تا 95درصد دانستیه تئوری برساند . گاهی اوقات برای افزایش مقاومت بیلت ممکن است حتی آن را سینتر هم بکنند .

مزایای استفاده از قوطی در روش سوم :

- جداسازی ماده اصلی از اتمسفر و مواد روانکار .

- جداسازی موادسمی مثل بریلیم و اورانیوم برای حمل و نقل ایمن .

- کپسوله کردن پودرهای کروی و سایر پودرهایی که فشرده کردن آنها برای به شکل بیلت در آوردن مشکل است .

- بهبود حرکت و سیلان فلز برای عبور از فصل مشترک قالب با انتخاب صحیح ماده قوطی .

- جداسازی مواد اصلی از قالب اکستروژن و ناحیه برشی شدید که برای مواد با انعطاف پذیری کم حائظ اهمیت است.

در ابتدا فشار بصورت خطی با حرکت نسبه افزایش می یابد تا بیلت کاملا مخزن اکستروژن را پر کند . به محض اینکه قطعه کاملا شروع به سیلان از داخل قالب نمود فشار به ماکزیمم خود می رسد که به عنوان فشار عبور از قالب (break trough) شناخته می شود . در اکستروژن معکوس با جلو رفتن سنبه فشار اکستروژن به یک حالت پایدار می رسد . در اکستروژن مستقیم فشار به طور پیوست کاهش می یابد که بعلت کاهش اصطحکاک بین بیلت و مخزن اکستروژن بدلیل کاهش سطح تماس بین آنهاست . ثابت بودن فشار در اکستروژن معکوس به این دلیل است که هیچ حرکت نسبی و درنتیجه هیچ اصطحکاکی بین بیلت و مخزن اکستروژن وجود ندارد . افزایش ناگهانی فشار پایانی نیز به علت مقاومت فرآینده سیلان بیلت باقیمانده و شروع مرحله دوم اکستروژن است . این تأثیر ممکن است بوسیله جا ماندن موادمصرفی بین بیلت و سنبه که تمیز شدن قالب بوسیله بیلت را ناشی می شود ایجاد شود .

متن کامل را می توانید بعد از پرداخت آنلاین ، آنی دانلود نمائید، چون فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است.

/images/spilit.png

دانلود فایل 


دانلود با لینک مستقیم


دانلود مقاله کامل درباره اکستروژن (آلیاژها)

دانلود مقاله کامل درباره متالورژی پودر

اختصاصی از فی بوو دانلود مقاله کامل درباره متالورژی پودر دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله کامل درباره متالورژی پودر


دانلود مقاله کامل درباره متالورژی پودر

 

 

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل: Word (قابل ویرایش و آماده پرینت)

تعداد صفحه :73

 

بخشی از متن مقاله

پیشگفتار:

یکی از شاخه‌های علم متالورژی که دز سالهای اخیر رشد زیادی یافته است. متالورژی پودر است. البته قدمت تولید قطعات با پودر به پنج هزار سال و بیشتر  می رسد. یکی دیگر از دلایل توسعه متالورژی پودر این است که در روش مزبور فلز تلف  شده به مراتب کمتر از  سایر روشهاست و حتی می توان گفت وجود ندارد. سرمایه گذاری در صنعت متتالورژی پودر نیز،‌کمتر از سرمایه گذاری برای  روشهای کلاسیک ساخت قطعات  است. زیرا در مرحله هم جوشی ،  درجه حرارت لازم کمتر از درجه حرارت ذوب فلزات است و در نتیجه، کوده های مورد احتیاح ارزانتر اند.

دامنه استفاده از متالورژی پودر بسیار متنوع و گسترده بوده و در این رابطه کافی است به زمینه هایی همچون تولید رشته های لامپها، بوش های خود روانساز، متعلقات گیربکس اتومبیل، اتصالات الکتریکی، مواد ضد سایش قطعات توربین و آمالگم های دندانپزشکی اشاره شود. علاوه بر آن پودر فلزات در موارد و کاربردهایی چون صنایع رنگ سازی مدارهای چاپی، آردهای غنی شده مواد منفجره، الکترود های جوشکاری،  سوخت راکت ها، جوهر چاپ، باطری الکتریکی قابل شارژ، لحیم کاری و کاتالیزورها مورد استفاده قرار می گیرند.

متالورژی پودر در ابتدا فلزات معمول، همچون مس و آهن شروع شد ولی لانه استفاده  از عمل آن به فلزات غیر دیگر نیز سرایت کرد. کاربردهای جدید تری برای متالورژی پودر به دنبال داشت. بطوریکه از آغاز دهه 1940 بسیاری از قطعات فلزات غیر معمول از طریع این تکنولوژی تهیه شدند. در این گروه مواد می توان از فلزات دیر گداز مانند نایوبیم، تنگستن، مولیبدن، زیر کنیم، تیتانیم، رنیم و آلیاژهای آنها نام برد. همچنین تعدادی از مواد هسته ای و ترکیبات الکتریکی و مغناطسسی نیز با تکنیک های  متالورژی پودر تهیه شدند. هر چند موفقیت اولیه متالورژی پودر بیشتر مدیون مزایای اقتصادی آن است. ولی در سالهای اخیر ساخت قطعاتی که تولید آنها  با روشهای دیگر مشکل می باشد در گسترش این تکنولوژی  سهم چشمگیری داشته است. انتظار می رود که این عوامل در جهت بسط متالورژی پودر و ابداع کاربردهای آتی آن دست به دست هم داده و دست آودرهای تکنولوژیکی تازه ای را  به ارمغان آورند. تداوم رشد متالورژی پودر را میتوان به عوامل پنجگانه زیر وابسته دانست:

الف) تولید انبوه قطعات سازه ای دقیق و با کیفیت بالا که معمولاً‌بر بکارگیری آلیاژهای آهن مبتنی می باشند.

ب ) دستیابی به قطعاتی که فرایند تولید آنها مشکل بوده و باید کاملاً فشرده و دارای ریز ساختار یکنواخت ( همگن) باشند.

پ ) ساخت آلیاژهای مخصوص،‌عمدتاً مواد مرکب محتوی فازهای مختلف که اغلب برای شکل دهی نیاز به  بالا تولید می شوند.

ت) مواد غیر تعادلی از قبیل آلیاژهای آمورف و همچنین آلیاژ های ناپایدار.

ث ) ساخت قطعات پیچیده که شکل و یا ترکیب منحصر به فرد و عیر معمول دارند

متالورژی پودر روز به روز گسترش بیشتری یافته و بر میزان پودر تولیدی به طور پیوسته افزوده، بطوریکه پودر آهن حمل شده از آمریکا از سال 1960 تا 1978 میلادی به ده برابر افزایش یافته است. هر چند در سالهای اخیر آهنگ رشد این تکنولوژی چندان پیوسته نبوده، ولی مجموعه  شواهد دلالت بر گستردگی بیشتر آن، در مقایسه با روشهای سنتی قطعه سازی دارد. باز خوردهای دریافت شده از مهندسین طراح نشان می دهد که هر چه دانش ما در متالورژی پودر افزودن تر می شود، دامنه کاربرد این روش نیز گسترش بیشتری می یابد. اغلب دست آوردهای نوین این زمینه صنعتی بر قابلیت آن در ساخت،‌ مقرون به صرفه قطعات با شکل و ابعاد دقیق مبتنی است.


مقدمه

در قرن بیستم و در سالهای اخیر، تکنیک متالورژی پودر بطور جدی تر،‌ مورد توجه قرار گرفته و جای خود را به اندازه کافی در صنعت باز کرده است بطوری که در حال حاضر می توان آن را به عنوان یکی از تکنیک های جدید متالورژی به حساب آورد. البته قدمت تولید قطعات با پودر به بیش از پنج هزار سال پیش می رسد، درآن زمان کوره هایی که بتوانند حرارت لازم را برای ذوب فلزات ایجاد کند، وجود نداشتند. روش معمول، احیا سنگ معدن با ذغال چوب بود و محصولی که به دست می آمد نوعی فلز اسفنجی بود که در حالت گرم با چکش کاری امکان شکل دهی مطلوب داشت.

هم اکنون، ستونی آهنی با وزنی حدود شش تن در شهر دهلی وجود دارد که در هزار وششصد سال پیش با همین روش تهیه شده است . در اواخر قرن هیجدهم و لاستون

( wollaston ) کشف کرد که می توان پودر فلز پلاتین را که در طبیعت به صورت آزاد شناخته شده بود، پس از تراکم و حرارت دادن، درحالت گرم با چکش کاری شکل داد. ولاستون جزئیات روش خود را درسال 1829 منتشر کرد و اهمیت فاکتورهای نظیر اندازه دانه ها، متراکم کردن پودر با وزن مخصوص بالا و اکتیویته سطحی و غیره.. را توضیح داد.

همزمان با ولاستون وبطور جداگانه متالوریست بر جسته روسی پیومتر زابولفسکی

( pyotrsobolevsky ) در یال 1826، از این روش برای ساختن سکه ها و نشان ها از جنس پلاتین استفاده کرد. در نیمه دوم قرن نوزدهم، متخصصین متالورژی به روشهای روب فلزات با نقطه روب بالا دست یافتند و همین مسئله باعث شد که مجدداً  استفاده از متالورژی پودر محدود شود،‌ هر چند تقاضا برای تولید قطعاتی مانند تنگستن از طریق  متالورژی پودر فلز، تلف شده به مراتب کمتر از سایر روشهاست و حتی می توان گفت وجود ندارد. دراین مورد، بطوری که تجربه نشان می دهد،‌ هر یک کیلوگرم محصول ساخته شده باروش متالورژی پودر، معادل است با چند کیلو گرم محصول ساخته شده با سایر روشهای شکل دادن نظیر برش و تراشکاری،  چون در روشهایی نظیر تراشکاری مقادیر زیادی از فلزبه صورت براده در می آید که تقریباً غیر قابل استفاده است. علاوه بر آن یک کیلو گرم از مواد ساخته شده بوسیله روشهای متالورژی پودر می تواند کار ده ها کیلو گرم فولاد آلیاژی ابزار را انجام دهد.

روش پاشش نظر به نقشاساسی آن در رشد متالورژی پودر، در مقایسه با روشهای دیگر با تفصیل و بسط بیشتری بررسی خواهد شد.

1-1- روشهای مکانیکی تولید پودر

1-1-1-  روش ماشین کاری

ماشین کاری کردن فلزات در حالات خاصی انجام می شود، زیرا پودر حاصل از این روش دارای دانه های زبر درشت با لبه های تیز است. این پودر سخت قالب گیری می شود وقطعه پرس شده آن خیلی متخلخل و دارای استحکام خام پایین است. آسیاب کردن این پودر در آسیابهای گلوله ای قابلیت فشرده شدن را بهتر می کند،  هر چند باعث افزایش کار سختی می شود که باید قبل از متراکم کردن آینل شود. یکی از موارد عمده استفاده از ماشین کاری تولید پودر منیزیم برای مقاصد آتش زایی است،‌ حالت انفجاری این پودر مانع استفاده از روشهای دیگر می شود. با استفاده از ماشین کاری و تولید براده های نسبتاً‌ زبر و درشت خطر به طور قابل ملاحظه ای کم می شود. وقتی براده ها در آسیاب از اتمسفر خنثی درآسیاب از ترکیب ذرات پودر و اکسیژن هوا جلوگیری می کند. و مانع انفجار می شود. تخلیه پودر از آسیاب نباید  به نحوی باشد که پودر فوراً در تماس با هوا قرار گیرد و باعث احتراق شود. اگر آسیاب کردن در مجاورت هوا انجام شود،‌ باید جدار آسیاب و نوع گلوله طوری باشد که از جرقه زدن  جلو گیری شود.

لحیم های نقره و بعضی از آلیاژهای مورد استفاده در دندان پزشکی از طریق ماشین کاری تهیه  می شوند. روش ماشین کاری، گران است و این روش فقط وقتی بکار گرفته می شود که روشهای دیگر قابل استفاده نباشد. مثل تهیه پودر منیزیم یا در مواقعی که قیمت فلز بسیار گران است و قیمت ماشین کاری ناچیز به حساب می آید،‌ مثل تولید آلیاژ های دندان پزشکی.

2-1-1- روش خرد کردن

خرد کردن فلزات به آسیاب کردن شبیه است و با توجه به چکش خواری آنها از خرد کن های تکی و چکشی  وغیره استفاده می شود. معدودی از فلزات به قدر کافی ترد و شکننده هستند. ( مانند برلیوم آلیاژ Mg ،Al اسفنج های فلزی که از راه احیای اکسید ها با الکترولیز به دست آمده اند) و به آسانی خرد می شوند. بعضی از فلزات را می توان ترد کرد تا آسانتر خرد شوند . با افزودن گوگرد یا ناخالصیهای دیگر یک لایه ترد در مرز دانه ها رسوب می کند وعمل خرد کردن را آسان می کند. اندازه ذرات پودر خرد شده مشابه دانه های قطعه ریخته گری شده است فلزات گروه VA.IVA ( سر گروه های در جدول مندلیف (C )،VA (A ) IV هستند) با حرارت دادن در محیط هیدروژن ترد می شوند ( H2 بعداً خارج می شود)‌ هیدراتهای تردی که ببه این طریق به دست می آیند به آسانی پودر می شوند. پودرهای به دست آمده معمولا زاویه ای هستند و باید آسیاب شوند.

3-1-1- روش آسیاب

واژه آسیاب کردت به پروسه هایی اطلاق می شود که در آن نیروی ضربه ای به مواد خرد شدنی وارد می شود. در بعضی از این روشها مانند آسیاب گلوله ای، پودر با گلوله های آسیاب که سخت و مقاوم در مقابل فرسایش اند برخورد می کند و به رزات ریز تبدیل می شود. نوع آسیابها، لرزشی و یا دورانی هستند تجربه نشان داده است که آسیابهای لرزشی راندمان بیشتری دارند و در مقایسه با آسیا بهای دوار در زمان کوکتاه تری عمل کرد را انجا م می دهند. در روشHametag با یک ونتیلاتور به ذرات پودر سرعت زیادی داده می شود تا به یکدیگر برخورد کنند.

در روشMicronizer  جت های گاز با سرعت زیاد ذرات را به همدیگر و یا به سطحی پرتاب می کنند. خرد کردن فلزات چکش خوار فقط زمانی عملی می شود که فلز با عمل کار سختی ترد وشکننده شده باشد. در آسیاب مرطوب با افزودن فعال ساز، به اکتیو کردن سطح کمک کرده و از چسبندگی ذرات جلوگیری می کنند که باعث ریزی ذرات می شود. بهترین عامل آلی اکتیو کردن سطح اسید- استثاریک است که با استفاده از آن ذرات به اندازه متوسط 3% میکرون به دست می آید. بااستفاده از پتاسیم فریک سیانید به عنوان فعال ساز پودر فلزاتی چون آهن، نیکل ، مس، و کروم با ابعاد ریز میکرون به دست می آید .

4-1-1- روش ساچمه ای کردن

با عبور مواد مذاب از روی صفحه ای مشبک یا وسیله ای مشابه آن جریان فلز مذاب به قطرات زیادی تبدیل می شود. اگر این قطرات در حال سقوط آزاد سخت و منجمد شوند، ذرات کروی ( ساچمه ای ) به دست می آید.

5-1-1- روشدانه بندی باگرانوله کردن

اگر انجماد در اثر تماس با آب حاصل شود دانه های نامنظم تولید می شود( مانند تولید سر باره دانه بندی شده در ذوب آهن اصفهای)  دانه ها نامنظم و درشت اند و به آسیاب کردن احتیاج دارند تا برای مصرف مناسب تر شوند.

متن کامل را می توانید بعد از پرداخت آنلاین ، آنی دانلود نمائید، چون فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است.

/images/spilit.png

دانلود فایل 


دانلود با لینک مستقیم


دانلود مقاله کامل درباره متالورژی پودر

دانلود مقاله کامل درباره روشهای فرآوری کانی آلونیت براساس استحصال آلومینیوم

اختصاصی از فی بوو دانلود مقاله کامل درباره روشهای فرآوری کانی آلونیت براساس استحصال آلومینیوم دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله کامل درباره روشهای فرآوری کانی آلونیت براساس استحصال آلومینیوم


دانلود مقاله کامل درباره روشهای فرآوری کانی آلونیت براساس استحصال آلومینیوم

 

 

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل: Word (قابل ویرایش و آماده پرینت)

تعداد صفحه :86

 

بخشی از متن مقاله

مقدمه:

از قرون و اعصار گذشته بشر در پی دستیابی به امکانات و ابزارهای توسعه تلاشهای فراوانی را در راه کشف مجهولات وتازه‌ها انجام داده است.

بی‌شک  فلز درعصر حاضر به عنوان زیر ساخت توسعه و فناوری همواره مورد توجه بوده و کشورهای پیشرفتة جهان با علم به این نکته سعی فراوانی را در راه کشف وتوسعة‌ ذخایر و منابع فلزی خود انجام داده و هم اکنون نیز علاوه بر استفادة‌ بهینه از ذخایر و منابع خود چشم به بهره‌برداری از مواد و کانی‌های غنی موجود در کرات دیگر و من جمله ماه دارند.

بدیهی است با توجه به بودن ذخایر و معادن قابل استحصال کشورها و همچنین استفادة‌ نادرست در بعضی مناطق، دورنمای صنعت فلز مبهم نماید با توجه به مطالب فوق نیاز بشر به ابداع روشهای جدید فرآوری جهت بهره‌برداری از معادن  و ذخایر کم عیار و همچنین استحصال آن بخشی از کانی‌هایی که از لحاظ متالوژیکی و کانه‌آرایی مشکل‌زا می باشند ضروری به نظر می‌رسد.

 لذا در عصر حاضر تمام توجهات به سمت مواد و کانیهایی است که تاکنون مورد توجه نبوده و یا به دلیل مشکلات فرآوری قابل استحصال نبوده‌اند.

با توجه به این مطلب فلز آلومینیوم نیز از این قاعده مستثنی نبوده و نیاز بشر به تولید واستحصال آن در سالهای آتی بسیار مورد توجه می‌باشد. در حال حاضر در صنعت آلومینیم جهان مهمترین منبع برای تأمین آلومینیوم کانی بوکسیت می‌باشد.

هم‌اکنون مهمترین و بهترین گزینه‌ برای تأمین آلومینیوم بعد از بوکسیت، آلونیت می‌باشد. کانیهای دیگری نیز جهت تولید آلومینیوم مورد توجه قرار دارند که از آن جمله می‌توان به آنورتوزیت – نفلین- رسها و شیل اشاره کرد.

سمیناری که در حال مطالعه می‌فرمایید بحث در مورد روشهای موجود فرآوری کانی آلونیت در گذشته و حال می‌باشد که همراه با بحث در مورد رفتارهای اختصاصی کانی آلونیت در شرایط مختلف شیمیایی و حرارتی و مطالعه دقیق خواص این کانی در محیطهای اسیدی و قلیایی می‌باشد.

همچنین کاربردهای مختلف آلونیت به غیر از تولید آلومینا مانند استفاده به عنوان منعقد کننده ( کواگولان) و ( فلوگولانت) در بحث تصفیه آب (‌Water Treatment ) و داروسازی مورد بحث قرار گرفته است.

زمین شناسی و پراکندگی آلونیت در ایران و جهان

پیش درآمد :

آلونیت در جهان از قرن پانزدهم تا اواخر قرن حاضر بعنوان منبعی برای زاج و سولفات آلومینیوم مورد استفاده قرار گرفته است . از زمان شناخت و بکارگیری آلونیت در ایران تاریخ دقیقی در دسترس نیست اما تردیدی نیست که سابقه طولانی داشته و چه بسا ایرانیان از پیش از قرن پانزدهم آن را مورد استفاده قرار می دهند از اوایل قرن حاضر از بوکسیت و رس هم تا حدودی برای بدست آوردن زاج و سولفات آلومینیوم استفاده    می شود . آلونیت در طول اولین جنگ جهانی نقشی استراتژیک و حساس در استرالیا و ایالات متحده امریکا در تهیه کود سولفات پتاسیم ایفا کرده است . ( (  Hall et al, 1983  

1 ـ 1 ـ ترکیب شیمیایی و برخی خصوصیات کانی شناسی آلونیت

آلونیت خالص از نظر تئوری با فرمول   دارای که  05/13 ، درصد  37/11 درصد ،  92/36 درصد و  66/38 درصد می باشد آنالیز بعضی از بلورها ممکن است مشابه ترکیب فوق باشد اما آلونیت طبیعی مقداری سدیم دارد که جانشین پتاسیم شده است. و در صورتیکه نسبت اتمی سدیم به پتاسیم معادل یک یا بزرگتر از یک باشد کانی را ناترو آلونیت گویند. چنانچه نسبت اتمی سدیم به پتاسیم بزرگتر از 1:3 می باشد ممکن است به آن آلونیت سدیک گویند اگر چه این نام گاهی به غلط مترادف با ناترو آلونیت در نظر گرفته می شود .

آلونیت از نظر بلورشناسی در سیستم هگزا گونال تبلور یافته و در حالت بلوری به صورت فیبری ولی اغلب در طبیعت به صورت متراکم یافت می شود . سختی کانی خالص آن 5/3 تا 4 درمقیاس موس و وزن مخصوص آن بین 6/2 تا 8/2 متغیر است . رنگ این کانی با توجه به ناخالصی های همراه آن نیز متغیر است چنانکه در رنگهای سفید ، خاکستری ، صورتی ، متمایل به زرد و قهوه ای و حتی بنفش مشاهده      می شود .

 

 

 

2 ـ1 ـ موارد استفاده و پراکندگی آلونیت در جهان

در برخی کشورها آلونیت جهت تولید آلومین  مورد استفاده قرار می گیرد ، چنانکه در آذربایجان شوروی ( سابق ) کارخانه ای با ظرفیت تولید تقریباً 200 تن در روز آلومین برپاست که از آلونیت ، آلومین استخراج می شود ، از آنجا که آلومین منبع با ارزشی برای آلومینیوم است ، آلونیت را می توان کانسار آلومینیوم بشمار آورد . کود از محصولات فرعی آلونیت است در ایران آلونیت از قدیم و بطور سنتی در تولید زاج مصرف می شده است که بکار رنگرزی و تصفیه خانه های آب و نفت می آید .

آلونیت در بسیاری از کشورها وجود دارد البته باید در نظر داشت که انباشته های بزرگ و غنی از آلونیت که برای تاسیس کارخانه تولید آلومین یا کود مناسب باشد ، به طور نسبی ،  کم است .

در دهه اخیر انباشته های بزرگی از آلونیت در برخی از ایالات باختری آمریکا کشف شده که مهمترین آن ها در جنوب باختر یوتا است ، ولی انباشته های آریزونا و کلرادو هم شایان توجه اند ، در نوادا و نیومکزیکو و به احتمال در مکزیک هم پتانسیل یا کانسارهایی از آلونیت با عیار بطور نسبی خوب وجود دارد .

به نظر می رسد بزرگترین و بهترین انباشته های آلونیت از نظر گستردگی و عیار در جمهوری های شوروی ( سابق ) است ، کارخانه تولید آلومین در آذربایجان شوروی از توف های آلونیتی شده اواخر ژوراسیک نزدیک ، زایلیک (Zaglik ) چند کیلومتری شمال باختر داش کسن ( Dashkesan ) تغذیه می شود و مقدار آلونیت سنگ ها حدود 40 درصد می باشد در دیگر جمهوری های شوری ( سابق ) بیش از 80 ذخیره دیگر وجود دارد که این انباشته ها در قزاقستان ، ارمنستان ، ازبکستان ، قرقیزستان ، تاجیکستان ـ پراکنده است .

در قاره آسیا بویژه در چین انباشته خیلی بزرگ از سنگ های واجد آلونیت در ناحیه   پین یانگ فانشن ( pinyang Fanshan ) ، در ژاپن ، جنوب کره ، ترکیه و دیگر کشورها هم گزارش هایی در مورد آلونیت موجود است ولی اقتصادی بودن برخی از آنها هنوز نامشخص است . همچنین ذخایر یا منابع موجود در اسرائیل ( فلسطین اشغالی ) ، مصر ، مراکش ، تانزانیا ، نیجریه ، نیوزیلند ، و سوماترا و فیلیپین مورد بررسی های دقیق قرار نگرفته است . در کشورهای  اروپایی مانند ایتالیا ، اسپانیا ، در جنوب امریکا ، جنوب مکزیک و استرالیا هم انباشته های قابل توجهی از آلونیت موجود است .

3 ـ 1 ـ چگونگی رخداد

آلونیت به صورت عدسی ها و رگچه ها در داخل کانسارهای رگه ای فلزات و نیز در داخل شکاف های سنگ های آذرین قلیائی یافت می شود ولی توده های بسیار بزرگ آن به طور معمول ،‌‌ در داخل توف ها و گدازه ها تشکیل می گردد . در ایران هم از هر دو نوع وجود دارد ولی تنها آن دسته که در اثر آلتراسیون با هر پدیده دیگر در سنگ های ولکانیکی یا توفی بوجود آمده ، از نظر حجم و وسعت شایان توجه است .

انباشته آلونیت نوع جانشینی شباهت کمی با نمونه های موجود در موزه یا توصیف های موجود در متون و نشریه های کانی شناسی دارد . بطور نمونه آلونیت در سنگهای آتشفشانی دانه ریز یا پورفیرهای دانه درشت تر ساب ولکانیک و یا در سنگ های نفوذی کم ژرفا بر اثر آلتراسیون می تواند بوجود آید. سنگ دگرسان شده اساساً از کواتزهای میکرو کریستالین ، آلونیت و مقادیر جزی هماتیت ، روتیل و آناتاز تشکیل شده است ، رسها و کانیهای سیلیسی غالباً از همراهان آلونیت در سنگ های آلتره شده می باشد . حضور فراون همین همراهان در فرایند تولید آلومین  می تواند تولید اشکال نماید .

تشخیص سنگ های آلونیت دار در روی زمین کار ساده ای نیست . سنگ های ولکانیکی دگرسان شده غنی از آلونیت و کائولینیت  ، سریسیت و دیگر کانی های دگرسانی خیلی مشابهند ، اما چون وزن مخصوص آلونیت ( 82/2 ) کمی بیش از وزن مخصوص کوارتز و رسها است ، بطور معمول ، حضور مقدار زیاد آلونیت در یک نمونه سنگ ولکانیک قابل تشخیص است .

آلونیت هایی که بصورت رگه ای هستند معمولاً صورتی رنگند ولی رنگ کلاً معیاری ضعیف در تشخیص سنگ های آلونیتی است . چون آلونیت در رنگهای گوناگون       می تواند باشد . ( بطور معمول ، رنگارنگ یا دارای خطوط رنگینی است و یا به آهن آلوده شده است . رنگ زرد پرتقالی معمولاً نشانه حضور جاروسیت ( سولفات آهن آبدار می باشد ) .

انباشته های مختلف آلونیت اندازه های متغیری دارد چنانکه از نودول ها یا  عدسی های کوچک در حد سانتی متر و تا توده های بزرگ محتوی چندین میلیون تن سنگ دگرسان شده با 30 تا 40 درصد آلونیت در تغییر است . در رگه های درون زا (hypogene ) آلونیت به طور تقریب خالص می تواند یافت گردد . Hall ( 1978 ، 1980 )        انباشته های آلونیت را در سه گروه می گنجاند :

1 ـ آلونیت رگه ای ؛      2 ـ آلونیت گرهکی ؛        3 ـ آلونیت جانشینی ؛

1 ـ 3 ـ 1 ـ آلونیت های رگه ای

آلونیت در رگه ها یا خیلی ریز بلور و یا نهان بلور ( Cryptocrystaline ) است که در این حالت به رنگ سفید و زرد می باشد . چنانکه آلونیت در رگه در چهره بلورهای درشت که گاه طول آن ها به 10 تا 20 میلی متر می رسد پدیدار شود ، صورتی رنگ است ( 1983 ، Hall et al  ) . اگر چه در رگه های با عیار بالا ، به  طور تقریب ، ‌آلونیت جانشینی قابل قبول برای بوکسیت خواهد بود ، اما کل منابع در دسترس و موجود در رگه ها کمتر از آن است که سازندة اساس ماده ای خام در صنعت باشد .

2 ـ 3 ـ 1 ـ آلونیت های گرهکی در سنگ های رسی رسوبی

آلونیت یا ناتروآلونیت گرهکی و لایه ها ور گه های کم ضخامت نامند آن از نظر جغرافیایی بسیار متداول و گسترده اند ( هال ،‌ 1978 ) و در شیل ها ، شیست های میکادار ، یا لایه های رسی یافت می شوند ، به نظر می رسد این آلونیت ها به طور دیاژنتیکی یا برون زایی ( Supergenic ) و در اثر عملکرد آب های زیرزمینی اسیدی غنی از سولفات ، در رسوبات آرژیلی سرشار از میکا یا ایلیتی بوجود آمده اند اکسیداسیون پیریت پراکنده در سنگ های رویی یا سنگ مجاور آن ، اسید لازم را فراهم می سازد ؛ پتاسیم از ایلیت یا میکا (مسکویت) موجود در رسوب میزبان آلونیت است . خلوص گرهک های آلونیتی ممکن است به خلوص آلونیت های رگه ای نزدیک باشد . ولی این رخدادهای رسوبی ، بیشتر ، محدود به لایه های کم ضخامت و ناممتدی است که بطور معمول ، با کائولین مخلوط بوده ، و توده های آن قدر بزرگی را تشکیل      نمی دهد که به عنوان منبع آلومینیوم بهره برداری شوند .

3 ـ 3 ـ 1 ـ آلونیت جانشینی در سنگ های ولکانیکی و سنگ های نفوذی کم عمق

این انباشته ها ابعاد بزرگ و ذخیره های قابل ملاحظه دارند و به طریقه روباز می توانند استخراج شوند . این گروه از انباشته ها بخش عمده منابع آلونیت را در امریکا و سایر نقاط جهان تشکیل می دهند ، و به عنوان منبع اساسی هر طرح صنعتی آلومینیوم با بکارگیری آلونیت در نقش یک مادة‌ خام ، بهره برداری می شوند اگر چه این انباشته ها از نظر عیار در چنان گسترش و حجم بالای ذخیره برخوردارند که می توان به طریقه روباز آن ها را استخراج نمود . در این انباشته ها میزان پتانسیل برای تغذیة یک کارخانه آلومین با مقیاس اقتصادی برای بیست سال یعنی تا زمان مستهلک شدن کارخانه کافی است . (Hall et al, 1983)

4 ـ 1 ـ منطقه بندی انباشته های جانشینی

یکی از مشخصات انباشته های بزرگ آلونیت (آلونیت جانشینی ) حالت منطقه ای
( Zoning ) در آن ها است . زونینگ کانی شناختی مشخصه انباشته های بزرگ آلونیت نوع جانشینی در باختر ایالات متحده امریکا است . منطقه بندی یکسان یا بسیار مشابه نیز در متون زمین شناسی دیگر کشورها هم  گزارش شده است .

به طور کلی چهار زون اصلی شناسایی شده است . مغزه یا پوشش سیلیسی ، کوارتز آلونیت ، آرژیلی ، پروپیلتی .

مغزه یا پوشش سیلیسی ( زون 1 ) مرکزی و برجسته و مترفع است ، و زون کوارتز آلونیت ( زون 2 ) ، زون آرژیلی ( زون 3 ) و سرانجام زون پروپیلیتی ( زون 4 ) در بیرون و به سمت پائین جانشین آن می شود . ممکن است در سطح زمین این چهار زون در جنب یا پهلوی یکدیگر باشند ، همچنین به طور عمودی ، اگر چه عموماً برای آشکارشدگی ارتباط منطقه ای در ژرفا ، حفاری عمیق ضروری است .

شرحی که در ادامه خواهد آمد حالتی ایده آل را به نمایش می گذارد و به ندرت در طبیعت رخ می دهد . بیشتر انباشته های طبیعی نامنظم و ناهمگن اند و انکلاوهای یک مجموعه منطقه بندی با دیگری احاطه می شود . دگرسانی ها ممکن است در هم داخل شود چنانکه یک زون یا چندین زون خیلی باریک و کم ضخامت می شود و در هنگام بررسی و مشاهده سطحی و اتفاقی ، آشکار نمی شود فزون بر آن مرزهای منطقه ای باریک و ظریف اند، نقشه برداری واقعی آن ها دشوار است و براساس اندازه گیری های پراش اشعه X پودر آن ها نقشه بطور دلخواه رسم می شود . ویژگی های هر یک از چهار زون نامبرده در ادامه اشاره خواهد شد .

متن کامل را می توانید بعد از پرداخت آنلاین ، آنی دانلود نمائید، چون فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است.

/images/spilit.png

دانلود فایل 


دانلود با لینک مستقیم


دانلود مقاله کامل درباره روشهای فرآوری کانی آلونیت براساس استحصال آلومینیوم