فرمت فایل: word(قابل ویرایش)تعداد صفحات91
امروزه با گسترش سیستمهای پایگاهی و حجم بالای دادههای ذخیره شده در این سیستمها، نیاز به ابزاری است تا بتوان دادههای ذخیره شده را پردازش کرد و اطلاعات حاصل از این پردازش را در اختیار کاربران قرار داد.
با استفاده از پرسشهای ساده در SQL و ابزارهای گوناگون گزارشگیری معمولی، میتوان اطلاعاتی را در اختیار کاربران قرار داد تا بتوانند به نتیجهگیری در مورد دادهها و روابط منطقی میان آنها بپردازند. امّا وقتی که حجم دادهها بالا باشد، کاربران هرچند زبر¬دست و با¬تجربه باشند نمیتوانند الگوها مفید را در میان حجم انبوه دادهها تشخیص دهند و یا اگر قادر به این کار هم باشند، هزینه عملیات از نظر نیروی انسانی و مادی بسیار بالا است. از سوی دیگر، کاربران معمولاً فرضیهای را مطرح میکنند و سپس بر¬اساس گزارشات مشاهده شده به اثبات یا رد فرضیه میپردازند، در حالی که امروزه نیاز به روشهایی است که اصطلاحاً به کشف دانش بپردازند یعنی با کمترین دخالت کاربر و بصورت خودکار الگوها و رابطههای منطقی را بیان نمایند.
داده کاوی یکی از مهمترین این روشها است که به الگوهای مفید در دادهها با حداقل دخالت کاربران شناخته میشوند واطلاعاتی را در اختیار کاربران و تحلیل گران قرار میدهند تا براساس آن تصمیمات مهم و حیاتی در سازمانها اتخاذ شوند.
اصطلاح داده¬کاوی زمانی بکار برده میشود که با حجم بزرگی از دادهها، در حد مگا یا ترابایت، مواجه باشیم. در تمامی منابع داده¬کاوی بر این مطلب تأکید شده است. هرچه حجم دادهها بیشتر و روابط آنها پیچیده¬تر باشد دسترسی به اطلاعات نهفته در میان داده¬ها مشکل¬تر میشود و نقش داده¬کاوی بعنوان یکی از روش¬های کشف دانش، روشنتر میگردد.
داده¬کاوی بطور همزمان از چندین رشته علمی بهره میبرد نظیر: تکنولوژی پایگاه داده، هوش مصنوعی، یادگیری ماشین، شبکههای عصبی، آمار، الگو، سیستمهای مبتنی بر دانش ، حصول دانش ، بازیابی اطلاعات ، محاسبات سرعت بالا و بازنمایی بصری داده .
پروژه DATA -MING