فی بوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی بوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود پروژه طراحی و ساخت دستگاه کنترل اتوماتیک دمای ترانسهای صنعتی و کوره ها

اختصاصی از فی بوو دانلود پروژه طراحی و ساخت دستگاه کنترل اتوماتیک دمای ترانسهای صنعتی و کوره ها دانلود با لینک مستقیم و پر سرعت .

دانلود پروژه طراحی و ساخت دستگاه کنترل اتوماتیک دمای ترانسهای صنعتی و کوره ها


دانلود پروژه طراحی و ساخت دستگاه کنترل اتوماتیک دمای ترانسهای صنعتی و کوره ها

پروژه مورد نظر کنترل اتوماتیک دما با استفاده از میکروکنترلر AT89C51 می باشد که بطور مختصر بدین ترتیب است که دما توسط یک سنسور حرارتی لمس شده و سپس این دما توسط یک مبدل آنالوگ به دیجیتال (ADC) به میکرو داده شده و میکرو با استفاده از برنامه ریزی که از قبل شده است که سه دما برای سنجش دارد اگر دمای مورد نظر را T بنامیم در این صورت عملکرد میکروکنترلر در خروجی بصورت زیر است:

اگر T<T1 باشد رله شماره I فعال می گردد.

اگر T1<T<T2 باشد رله شماره II فعال می گردد.

و اگر T2<T<T3 باشد رله شماره III فعال می گردد.

و اگر T>T3 باشد رله شماره IV فعال می گردد.

شماره رله مورد نظر

 و یکی از خروجی های میکروکنترلر به یک Display وصل است که از نوع LCD بوده و می توان دمای T1 و T2 و T3 مورد نظر را وارد کرد و همچنین پیغام اینکه کدام رله فعال است را در آن مشاهده کرد Relay # › is active  که هر قسمت مدار مفصل توضیح داده می شود.

 

میکروکنترلر در برابر میکروپرسسورهای همه منظوره:

منظور از یک میکروپرسسور (ریزپردازنده ) میکروپرسسورهایی از خانواده Intel همانند X86 مثل  و …. این میکروپرسسورها فاقد  و پورت های I/O در درون خود تراشه هستند به این دلیل به آنها میکروپرسسورهای همه منظوره گویند.

طراحی سیستمی که از میکروپرسسورهای همه منظوره استفاده می نماید باید در خارج آن RAM و ROM ، پورت های I/O و تایمرها را اضافه نمود تا سیستمی قابل کار ساخته شود این افزایش به قابلیت انعطاف آنها می افزاید این توانمندی در میکروکنترلرها امکان پذیر نیست یک میکروکنترلر دارای یک cpu به همراه مقدار ثابتی از RAM ، ROM ، پورت های I/O و تایمر درون خود می باشد بنابراین طراح نمی تواند یک حافظه، I/O یا تایمری را بدون گسترش لازم آن از بیرون اضافه نماید مقدار ثابت

RAM  و  ROM و مقدار پورت های تثبیت شده در میکروکنترلرها آنها را برای کاربردهائی که قیمت و محفظه در آنها بحرانی است ایده آل کرده است

شامل 20 صفحه فایل word قابل ویرایش


دانلود با لینک مستقیم


دانلود پروژه طراحی و ساخت دستگاه کنترل اتوماتیک دمای ترانسهای صنعتی و کوره ها

تحقیق درمورد تولید آجر به روش نیمه اتوماتیک

اختصاصی از فی بوو تحقیق درمورد تولید آجر به روش نیمه اتوماتیک دانلود با لینک مستقیم و پر سرعت .

تحقیق درمورد تولید آجر به روش نیمه اتوماتیک


تحقیق درمورد تولید آجر به روش نیمه اتوماتیک

لینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 

تعداد صفحه:75

 

فهرست مطالب:

2ـ مطالعات اقتصادی:

اشکال مختلف:

-3 کالای رقیب جانشین :

سایر مشخصات:

3ـ2 بررسی روشهای مختلف تولید :

 

3- برسیهای فنی:

3-2-1-1 تجهیزات و وسائل مختلف:

3-2-1-2 خطوط مختلف تولید با توجه به خاک مصرفی:

مقدمه:

آجر نیز از جمله مصالح ساختمانی می‌باشد که تولید و عرضه آن بطور قابل ملاحظه‌ای کمتر از میزان تقاضا در جامعه می‌باشد یکی از علل عمدة این وضعیت سرمایه گذاری نسبتاً بالای این صنعت می‌باشد .

متأسفانه علیرغم اینکه ساخت ماشین آلات آجر و محصولات همردیف (نظیر بلوک، سفال ، و کاشی کف و. . . ) از تکنولوژی بالایی هم برخوردار نیست ولی هنوز وابستگی به ماشین آلات خارجی بویژه برای ظرفیت های بالا وجود دارد موضوع سرمایه گذاری نسبتاً بالا بویژه در صورتیکه امکان استفاده از ارز دولتی مقدر نباشد و عدم کارآیی روشهای کاملاً نسبتی جهت پاسخگویی به نیاز جامعه زمینة استفاده از طرحهایی که ضمن استفاده از امکانات ماشینی و موجود در جامعه وابستگی تکنولوژیکی کمتر و سرمایه‌گذاری کمتری را نیاز داشته باشد، فراهم می‌سازد. بهمین منظور طرح براساس استفاده از حداکثر امکان ساخت داخل در زمینه ماشین آلات تهیه گردیده و در بخش دیگری از طرح نیز از روش صنعتی خشک کردن خشت استفاده خواهد شد که البته با ملاحظاتیکه در نظر گرفته شده و در 0صورت اعمال کنترل‌های لازم نقاط ضعف روش مذکور برطرف و محصول تولیدی از کیفیت لازم و قابل قبول برخوردار خواهد بود. نکته قابل توجه دیگر هزینة حمل بالای این محصول می‌باشد که احداث واحدهایی با ظرفیت پائین و مشابه ظرفیت طرح پیشنهادی را توجیه می‌نماید این هزینه برای یک قالب آجر در طی مسافت یکصد کیلومتر 6تا 7 ریال باشد که کمی بیشتر از قیمت تمام شده طرح می‌باشد در حال حاضر هزینه یک قالب آجر که از نقاط مختلف کشور جهت بازسازی به مناطق زلزله زده می‌رسد بین 75 تا 90 ریال است که عمدتاً مربوط به هزینة حمل می‌باشد. تنها نکته‌ای که در مورد محل اجرای طرح بایستی مورد توجه قرار گیرد، وجود فصول آفتابی در محل احداث طرح می‌باشد البته توجه به وضعیت آب و هوایی کشور این امکان در اکثر نقاط بویژه در مناطق مرکزی ، شرقی ، جنوب و جنوب غربی کشور وجود دارد. به منظور جلوگیری از وقفه در تولید نیز که ممکن است بر اثر اختلافات موقتی جوی پیش می‌آید تدابیر لازم از جمله انبار موقت خشت خام خشک شده ،‌انبار محصول و همچنین در نظر  گرفتن چهار قمیره بصورت رزرو در کوره هوفمن طرح پیش‌بینی گردیده است.

 

 

 

 

 

 

1ـ خلاصه طرح

نام محصول :آجر نمای سفالین

ظرفیت سالانه: 20 میلیون قالب در سال

تعداد روز کار در سال : 270 روز

تعداد شیفت : آماده سازی و عمل آوری مواد          2 شیفت

خشک کن و کوره                                                3 شیفت

ساعات کار هر شیفت:                                            8 ساعت

سطح زیر بنا:                                                          2281 متر مربع

مساحت زمین:                                                       23200متر مربع

سرمایه گذاری ثابت:                                             265 میلیون ریال

کل سرمایه گذاری:                                               284 میلیون ریال


دانلود با لینک مستقیم


تحقیق درمورد تولید آجر به روش نیمه اتوماتیک

مقاله در مورد کنترل کننده های فشار

اختصاصی از فی بوو مقاله در مورد کنترل کننده های فشار دانلود با لینک مستقیم و پر سرعت .

مقاله در مورد کنترل کننده های فشار


مقاله در مورد کنترل کننده های فشار

لینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

  

تعداد صفحه:18

 

  

 فهرست مطالب

 

 

 

کنترل کننده های فشار

مشخصات

اطلاعات جانبی

Cd نصب

نصب و مراقبت

اطلاعات سرویس

خطوط تجاری مدل ها

 

 

 

 

 

کنترل کننده های فشار L404 و L604 از جمله کنترلرهایی هستند که می توانند محدوده فشار را بهصروت اتوماتیک یا دستی تا 300Psi یا ( 2101kg/Cm2یا2068kpa ) تنظیم و محافظت نمایند.

ü توان تشخیص فشار سیالات عامل مانند بخار، هوا، گازهای غیر قابل اشتعال یا سیالات غیر خورنده را دارد.

ü در بررسی های بعمل آمده در پودر کردن نفت با فشارهای متوسط در مشعل ها L404B پیشنهاد شده است.

ü جدول هایی با Spst ، Spdt یا Dspt موجود  می باشند که دارای ربع کارکرد متنوعی می باشند.

ü کلیدهای جیوه های به گرد و غبار حساس نیست اند (تمام مدل ها بجز L404f که عملکرد جداگانه ای داد)

ü تمام مدل ها قابلیت تنظیم بصورت کاهش متغیری را دارند (بجز L604m )

ü دسته بزرگی از ماشین ها با راه اندازی دستی با جابه جایی اهرم راه انداز نمی شکند و محدوده عملکرد محافظتی دارند.

ü پیچ تنظیم در بالای محفظه نصب شده است.

ü واحد سنجش در انگلیس (Psi) و در بقیه جاها واحد متریک (kg/cm2) استو

ü بیشتر واحدهای سنجش در اروپا به غیر از انگلستان در مورد لوله ها، پیچ ها و همچنین فشار که بر حسب kg/cm2  یا kpa و غالباً psi است.

ü پوشش کلید و محفظه کنترل فشار از پلاستیک روشن است.

ü نشان دهنده سطح در فضای از پوشش قرار گرفته است.

ü محفظه شش ضلعی مناسب با (1/4  تا 18) پیچهای داخلی، بطور مستیم برای 14026 یک بخار مونتاژ شده است (حلقه سیفونی)

ü از پیچهایی که در میان سوراخ های پشت محفظه قرار گرفته است برای پایه ها استفاده می شود.

خطوط تجاری مدل ها

خطوط تجاری موجب دسترسی، تهیه و قابلیت تعویض آسان را در اختیار قرار می دهد. مشخصات اغلب کنترلرها شبیه هم است به جز مواردی که در زیر بیان شده است.

خطوط تجاری مدل های موجود

کنترل فشار L604A دارای مدل های موجود زیر است :

1 – (2-15)psi یا kg/cm2 (014-1.1) یا Kpa (14-103)

2 -  (5-5u)psi یا kg/cm2 (04-3.5) یا kpa (34-345)

3-  psi(10-150) یا kg/cm2 (07-10.6) یا (69-1034)

4- psi (20-300) یا kg/cm2  (1.4-21.0) یا kpa (38-2068)

اطلاعات اضافی : خط تجاری فشرده با علامت بازگشت پذیری مجدد.

طول های استاندارد

مدل ها : کنترل فشارهای L404A-Bf و L604A,l,m در جدول 1-A (14026 یک بخار یا حلقه سیفونی) نشان داده شده و موجود است بجز مورد مشخصی که در جدول 1 در مورد تلبه بخار که نیازمند نصب بویلر است.

کلیدها :

در تمام مدل ها به جز مدل L404f که از میکروکیر استفاده شده است در بقیه مدل ها از کلیدهای جیوه ای استفاده شده است.

سنسورهای تشخیص فشار :

دیافراگم با فولاد ضد زنگ (برنج معمولی در 300Psi  یا 211kg/cm2 یا 206kpa)

دمای متوسط ماکزیمم : 150f یا 66c

دمای متوسط مینیمم :   کمتر از (35f یا 37c ) البته با توجه به برش در مونتاژ

متعادل کردن : بوسیله پیچی که در بالای محفظه نصب شده است می توان فشار Psi یا kpa را تنظیم کرد.

تنظیم اتصال الکتریکی : بوسیله پیچی که درون سوراخی به قطر 1/2 در کنار مفصله قرار گرفته است صورت می گیرد.

مونتاژ کردن : از یک محفظه شش ضلعی مناسب با دیافراگم دارای 18Npt تا 1/4 و پیچهای داخلی برای مونتاژ یک لوله یا یک بخار استفاده می شود همچنین محفظه آن بوسیله پیچهایی که در سوراخ پشت شبکه بسته می شود به پایه متصل می شود.

اطلاعات جانبی

برای ضریب، تعویض و مدرنیزه کردن تولیدات برای قرار گرفتن در خط تجارت بازرگانان و توزیع کنندگان خط تجارت به کاتالوگ ها و قیمت های فروش و دیگر اطلاعات مراجعه می کنند.


دانلود با لینک مستقیم


مقاله در مورد کنترل کننده های فشار

ساخت و ارزیابی سامانه ترازکن اتوماتیک چهارطرفه کمباین

اختصاصی از فی بوو ساخت و ارزیابی سامانه ترازکن اتوماتیک چهارطرفه کمباین دانلود با لینک مستقیم و پر سرعت .

ساخت و ارزیابی سامانه ترازکن اتوماتیک چهارطرفه کمباین


ساخت و ارزیابی سامانه ترازکن اتوماتیک چهارطرفه کمباین نویسند‌گان: فرید امیرشقاقی ، فرشید رسولی ، مسعود تیموری
خلاصه مقاله:
به منظور مکانیزه نمودن برداشت در اراضی شیبدار، کاهش تلفات دانه و افزایش ضریب ایمنی کاربر، سامانه ترازکن اتوماتیک چهارطرفه جهت نصب روی کمباین ساخته شد. در این سامانه جهت اندازهگیری طولی و عرضی شیب زمین از دو پتانسیومتر استفاده شده که با تغییر شیب در اثر حرکت پاندول، خروجی پتانسیومتر تغییر یافته و به صورت سیگنال آنالوگ پس از عبور از فیلتر پائینگذر، وارد مدار تقویتکننده جهت تقویت سیگنالهای تضعیفشده خروجی از فیلتر میگردد. به منظور تبدیل سیگنالهای آنالوگ به دیجیتال از دو عدد مبدل از نوع دو شیبی استفاده شدهاست که خروجی این مبدلها توسط یک میکروکنترلر گرفته شده و فرمانهای مناسب جهت راه اندازیاجزای مدار هیدرولیک داده میشود. الگوریتم برنامه داده شده به میکروکنترلر به گونهای میباشد که پس از مشخص شدن جهت شیب زمین، فرمانهای مناسب به شیرهای کنترل جکهای دو طرفه ارسال، و با تغییر در کورس جکهاو باز و بسته شدن آنها، با تراز کامل سامانه با سطح افق، ارسال دستور به جکها متوقف میگردد
کلمات کلیدی: سامانه ترازکن، اتوماتیک، کمباین، ساخت و ارزیابی

دانلود با لینک مستقیم


ساخت و ارزیابی سامانه ترازکن اتوماتیک چهارطرفه کمباین

دانلود مقاله مقاله ترجمه شده سیستم پارک کردن اتوماتیک خودرو-اموزشی

اختصاصی از فی بوو دانلود مقاله مقاله ترجمه شده سیستم پارک کردن اتوماتیک خودرو-اموزشی دانلود با لینک مستقیم و پر سرعت .

 

 

 

آر. جِی. اوئنتاریو و ام. پاسکیر

 

چکیده
این مقاله قسمتی از یک مطالعه انجام شده در مرکز هوش محاسباتی در NTU را معرفی میکند که برای ایجاد تکنولوژی های جدید برای مسیریابی، هدایت، و کنترل ماشین های هوشمند انجام شده است. یکی از اهداف آن دادن توانایی حرکت اتوماتیک به ماشین ها در انواع مختلف جاده ها و شناسایی مانورهایی مانند پارک معکوس و موازی، گردش های سه فرمانه، و غیره است. یک روش برای انجام اینکار اینست که یک سیستم خود-آموزشی طراحی کنیم که از مهارت انسان ها برای حرکت اتوماتیک یک سیستم کنترل ماشین است. یک ساختار عصبی-فازی جدید با نام شبکه عصبی فازی GenSoYager ایجاد و با شبیه ساز حرکت ماشین برای اهداف آموزش و آزمایش ترکیب شده است. GenSoYagerFNN تاکنون اثبات کرده است که از شبکه های آموزشی دیگر در شناسایی محل پارک و انجام مانورهای پارک معکوس، بهتر است. راهکار توصیف شده نیز با استفاده از یک ماشین مدل کنترل شونده با ریز پردازنده اعتباریابی شده است.
1- مقدمه
رشد چشمگیر در تکنولوژی حرکت اتوماتیک در جامعه موتوری کردن امروزی در قرن گذشته به اوج خود رسیده است، که امنیت آن بیشتر از یک مسئله الزامی است. چون خطاهای انسانی علت اصلی در اغلب تصادفات ترافیک است، بنابراین ایجاد تکنولوژی های in-car برای نمایش، اجتناب و راهنمایی به حیطه تحقیقاتی اصلی تبدیل شده است، و هدف آن کاهش مسئولیت راننده انسانی، افزایش ظرفیت ترافیک، و فراهم سازی عملیات ماشینی ایمن است. گروه ما در مرکز هوش محاسباتی در NTU مدتهای طولانی بر روی این موضوع، و خصوصاً درک سیستم های حرکت خودکار برای ماشین های جاده ای مطالعه کرده است.
این مقاله جدیدترین سیستم ما با نام شبکه عصبی فازی Yager خود-سازماندهی کلی (GenSoYagerFNN) و کاربرد آن در حرکت اتوماتیک یک ماشین بر روی جاده و شناسایی مانورهایی مانند پارک معکوس و گردش سه فرمانه را توصیف میکند. راهکار ما از طراحی یک سیستم خود-آموزشی تشکیل شده است که میتواند از مهارت انسانی برای استخراج اتوماتیک قوانین عینی برای کنترل ماشین استفاده کند. فرضیه ما به این صورت است که رانندگی یک فرآیند تصمیم گیری مداوم است که می توان آنرا به یک سری قوانین مربوط به ورودی حسی برای کنترل خروجی تجزیه کرد. یک سیستم کنترل فازی برای مدلسازی ابهام ذاتی اطلاعات موجود (سرعت، فاصله، متغیرهای محیط دینامیک) انتخاب می گردد. سپس این سیستم فازی قانون-مبنا در بالای یک ساختار شبکه عصبی قرار داده می شود، که توانایی یادگیری، یادآوری، استنباط و سازگاری با داده های آموزشی را فراهم می سازد. شبکه عصبی فازی برآیند، یا سیستم عصبی-فازی، دارای قابلیت هر دو تکنیک (یعنی جنبه یادگیری و قابلیت های بهینه سازی و همچنین ساختار پیوندگرا، توانایی استدلال انسانی و راحتی ترکیب دانش فنی) است. در همان زمان، اشکالات و نقایص هر راهکار کاهش داده می شود: مسئله طراحی برای سیستم فازی قانون-مبنا (انتخاب عملکردهای عضویت، شناسایی قوانین فازی) و ماهیت جعبه سیاه شبکه (ظرفیت لایه های میانی).
استنباط در GenSoYagerFNN پس از طرح استدلال Yager مدلسازی می گردد، که تفاوت های ورودی ها را با گزینه های قبلی قوانین برای استنباط درجه تفاوت با قانون گزینه بعدی محاسبه میکند، و بنابراین به خروجی می رسد. مزیت اصلی آن نسبت به قانون محاسباتی استنباط (CRI) قدیمی اینست که وقتی که ورودی دقیقاً با گزینه قبلی مطابقت دارد، خروجی برآیند نیز با گزینه بعدی کاملاً مطابقت خواهد داشت. از لحاظ شهودی، قانون استنباط Yager به استدلال انسانی نزدیک تر است، و بصورت مهمتر از تکنیک های موجود پدیدار می گردد. در واقع تاکنون اثبات شده است که GenSoYagerFNN از شبکه های آموزشی دیگر در شناسایی محل های پارک و اجرای مانورهای پارک معکوس، بهتر است. و در آخر اینکه، باید بگوییم که با اینکه مطالعه گزارش شده بصورت شبیه سازی انجام شده است، اما این راهکار بتازگی با استفاده از یک ماشین مدل کنترل شونده توسط ریز پردازنده نیز تأیید شده است.
2- شبکه عصبی فازی GenSoYager
GenSoYagerFNNپیشنهاد بر مبنای ساختار پیوندگرای داخلی دیگری با نام شبکه عصبی فازی خود-سازماندهی کلی (GenSoFNN) است و قادر است که بصورت اتوماتیک قوانین فازی را از روی داده های آموزشی عددی موجود ایجاد کند و یک سری قوانین سازگار را توسط اطمینان از این مسئله حفظ کند که هر برچسب فازی در ابعاد ورودی/خروجی بصورت مختص فقط توسط یک دسته (سری فازی) نشان داده می شود. هر سری فازی ورودی می تواند به گزینه های قبلی بیش از یک قانون فازی کمک کند. GenSoYagerFNN قابلیت مقاومت نویز قوی توسط استفاده از یک تکنیک دسته بندی جدید با نام دسته بندی افزایشی مجزاذ (DIC) دارد. در این چارچوب، داده های نویزی/ساختگی که دارای رابطه ضعیفی با داده های معتبر یا واقعی دارند، دسته های مجزایی برای آنها ایجاد می گردد. همچنین، DIC نیازمند هیچ دانش قبلی در مورد تعداد دسته های دامنه مسئله نیست. این ویژگی ها همان دلیلی هستند که GenSoYagerFNN نسبت به راهکار های دیگر استنباط Yager انتخاب شد.
دوره آموزشی GenSoYagerFNN شامل سه مرحله است: خود-سازماندهی، طرح ریزی قوانین، و یادگیری پارامترها، که همه آنها در یک سری منفرد از داده های آموزشی رخ میدهند و امکان استفاده آنلاین از سیستم را فراهم می سازد. یادگیری انتشار-عقبی معروف بر مبنای نزول شیب منفی در مرحله آخر برای تنظیم پارامترهای شبکه مورد استفاده قرار می گیرد. GenSoYagerFNN از پنج لایه گره تشکیل شده است (شکل 1)، که هر کدام از آنها دارای روابط "گنجایش ورودی" متناهی و "گنجایش خروجی" متناهی است. تعداد گره ها در هر لایه توسط nI نشان داده می شود، که . هر یک از گره های ورودی در لایه دارای یک ورودی منفرد است. تعداد خصوصیات ورودی سری داده های استفاده شده برای آموزش شبکه، تعداد گره های ورودی n1 را تعیین می کند، که بصورت بردار نشان داده میشود. همچنین، هر یک از گره های خروجی (که ) خروجی منفرد را محاسبه میکند، و همه خروجی ها با توجه به X بصورت بردار نشان داده می شوند.
GenSoYagerFNN از طرح آموزشی نظارتی برای فرمولبندی اتوماتیک قوانین فازی از داده های آموزشی و برای تنظیم پارامترهای سیستم استفاده میکند. بردار نشاندهنده خروجی های مطلوب شبکه است. قبل از آموزش، GenSoYagerFNNفقط دارای گره لایه 1 و لایه 5 است. لایه های منفی که شامل گره های گزینه ورودی هستند (لایه 2)، گره های قانون (لایه 3) و گره های گزینه خروجی (لایه 4) بصورت پیشرفت های آموزشی ایجاد و تنظیم می گردند. اثرات قابل آموزش شبکه (ضمیمه شده در بلوک های مستطیلی شکل 1) را می توان در لایه های 2 و 5 پیدا کرد، که بترتیب سری فازی ورودی و خروجی را توصیف میکنند. اثرات روابط شبکه باقیمانده با هم متحد هستند. گره های ورودی در لایه 1 ممکن است دارای تعداد گزینه های ورودی متفاوتی باشد. برای گره ورودی ، تعداد گره های گزینه ورودی بصورت شنان داده می شود و تعداد کلی گره های لایه 2 بصورت است. هر گره در لایه 3 یک گره قانون است، و بنابراین و n3 تعداد کلی قوانین فازی در GenSoFNN است. هر گره خروجی در لایه 5 میتواند دارای تعداد گزینه های خروجی متفاوتی باشد، و بنابراین تعداد کلی گره های لایه 4 بصورت نشان داده میشود.

 


شکل 1 – ساختار GenSoYagerFNN

 

3- طرح استدلال Yager
استنباط فازی قانون قیاس استثنائی متعارف را توسعه میدهد، که بیان میکند که قضیه Y بصورت B است را می توان از قضیه های زیر استنباط کرد:

قضیه مربوط به متغیر فازی مشترک است و در فضای فرآورده متقاطع توسط توزیع احتمال مانند معادله 1 توصیف می گردد:

دو تعبیر ممکن بر مبنای مدلهای رابط و مفهوم-مبنا برای رابطه فازی R وجود دارد. طرح قانون ترکیبی استنباط (CRI) از راهکار اول استفاده می کند، درحالیکه قانون Yager استنباط از راهکار دیگر استفاده میکند. در نتیجه، تابع عضویت برای R با استفاده معادله 2 یا معادله 3 محاسبه می گردد، که با انتقال منطقی مطابقت دارد که به دو شیوه مختلف تعبیر می گردد. قانون-T و کونورم-T بترتیب نشاندهنده تعاریف کلی عملگرهای سری فازی رابط و انفصالی هستند، که معمول ترین آنها عملگرهای min و max هستند.

می توان مشاهده کرد که معادله 3 با بیانیه مطابقت دارد که در منطق جدید با برابر است. مدل مفهوم-مبنا از رابطه فازی (یعنی راهکار دوم) دقیقاً مفهوم مرکزی است که اساس طرحاستدلال Yager بکار گرفته شده توسط GenSoYagerFNN پیشنهادی است.
4- عملیات GenSoYagerFNN
GenSoYagerFNN پیشنهادی از 5 لایه نورون تشکیل شده است، که عملیات آنها در بخش های بعدی توضیح داده می شود.
لایه فازی سازی - این لایه از گره های ورودی تشکیل شده است که بصورت فازی ساز های منفرد عمل میکنند که فازی سازی ورودی های دارای مقدار مطلق را انجام میدهد که برای شبکه معرفی شده است. موتور استنباط Yager برای استفاده از ورودی های فازی شده و محاسبه خروجی های فازی شده مناسب، به فازی سازی نیاز دارد.
لایه گزینه قبلی - ورودی های فازی شده از لایه 1 با برچسب های ورودی مطابق مقایسه می گردند که گزینه های قبلی قوانین فازی را در GenSoYagerFNN تشکیل میدهند. اشتقاق پیش نیاز در لایه 2 سنجش عدم تناجس را محاسبه میکند، که ضرورتاً حالت منفی مقادیر عضویت ورودی ها با توجه به سری های فازی ورودی است.
لایه قانون - گره های لایه 3 قوانین فازی را در GenSoYagerFNN مدلسازی میکند. هر گره درجه موفقیت ورودی های جاری (یعنی شباهت کلی) را با توجه به گزینه های قبلی قانون فازی محاسبه میکند که آنرا نشان میدهد.
لایه گزینه بعدی - لایه 4 از گره های گزینه خروجی تشکیل شده است که نشاندهنده سری فازی های خروجی بعدی قوانین در لایه 3 است. هر گره گزینه خروجی را می توان با قوانین فازی چندگانه مرتبط ساخت که نشاندهنده اینست که آنها ممکن است دارای گزینه های بعدی یکسانی باشند. همانطور که گفته شد، GenSoYagerFNN از مدل مفهوم-مبنا استفاده میکند و بنابراین نتیجه گیری های قوانین موازی بصورت مرتبط در این لایه با هم ترکیب می گردند.
لایه غیر فازی سازی - لایه 5 شامل گره های خروجی است که مسئول غیر فازی سازی نتیجه گیری های فازی اشتقاقی است و آنها را بصورت خروجی های جدید معرفی میکند. تجمع با استفاده از مرکز میانگین گیری (COA) اصلاح شده برای تولید خروجی نهایی اعمال می گردد.
5- سیستم پارک اتوماتیک
یک شبیه ساز رانندگی سه بعدی (شکل 2) ساخته شد تا داده های رانندگی را از رانندگان انسانی جمع آوری کند. این داده ها ابتدا برای آموزش کنترل گر ماشین و سپس برای اندازه گیری قابلیت رانندگی آن استفاده می گردد. اطلاعات فیدبک شامل داده های حسی مانند فاصله از موانع و موقعیت ماشین با توجه به پروفایل مسیر/جاده جاری و سیگنال های کنترل متشکل از شتاب، ترمز و نسبت چرخ دنده ها است.

 


شکل 2 – شبیه ساز رانندگی اتوماتیک ماشین

 

از GenSoYagerFNN برای مدلسازی و کپی برداری مهارت رانندگی انسان برای انجام مانورهای پارک معکوس استفاده شد. میتوان گفت که سری قوانین فازی ایجاد شده توسط GenSoYagerFNN تقریباً با دانش ما در مورد فرآیند رانندگی ماشین برابر است. در نتیجه، کارایی آن با استفاده از شبیه ساز ماشین و همچنین ماشین مدل کنترل شونده توسط ریز پردازنده مورد بررسی قرار گرفت.
پارک معکوس یک مانور معمول است که بسرعت و همراه با افزایش ترافیک شهری و فضای پاک محدود، متداول شده است. در راهکار ما، فرآیند پارک کردن در سه مرحله مجزا انجام می شود. ابتدا ماشین کنترل شونده توسط GenSoYagerFNN مسیر را دنبال میکند تا اینکه یک محل پارک خالی با اندازه مناسب پیدا میکند. سپس ماشین به جلو حرکت میکند و فاصله مناسبی را با توجه به دیوار تنظیم میکند. اینکار برای داشتن یک موقعیت مناسب برای انجام پارک معکوس است. در آخر، ماشین مانور پارک معکوس را بصورت درست انجام میدهد. این مرحله از هر سه شبکه آموزشی مستقل برای هدایت فرمان، ترمز، و شتاب استفاده میکند. ممکن است تنظیماتی برای حرکت مکرر ماشین به سمت عقب و جلو لازم باشد تا اینکه موقعیت پارک مناسب ایجاد می گردد. مثال نوعی از یک مانور موفقیت آمیز در شکل 3 نشان داده شده است.

 


شکل 3 – پارک معکوس با استفاده از GenSoYagerFNN

 




شکل 4 –قدرت تحریک قانون کنترل گرهای ماشین
مطالعه قدرت تحریک قانون برای تحلیل توانایی شبکه برای حفظ سازگاری مبنای قانون انجام شد. خصوصاً نسبت قوانین استفاده شده با تعداد کلی قوانین در شبکه مقایسه شد. به حداقل رساندن تعداد قوانین در شبکه برای اطمینان از کارایی خوب ضروری است، و در هنگام استفاده از بعنوان مثال، یک سیستم کنترل ترکیبی با توان ذخیره سازی محدود، ضروری می گردد. یک مبنای قانون سازگار توسط گسترش وسیع قوانین تحریک شده نسبت به تعداد کلی قوانین برای همه موقعیت های پارک موجود، به بهترین شکل نشان داده میشود. نتایج آزمایشی برای قدرت تحریک قانون در سراسر فرآیند پارک معکوس در شکل 4 بصورت خلاصه بیان شده است.
برای شبکه هدایت فرمان، 45 قانون در حین فرآیند آموزش ایجاد شد. دو قانون مهم (قوانین 27 و 28) و چهار قانون کمکی با قدرت تحریک کمتر شناسایی شده است. برای شبکه شتاب (TPS)، 112 قانون در حین آموزش ایجاد شد. چهار قانون (قوانین 36، 65، 66 و 112) و سپس سه قانون کمکی (قوانین 57، 65، 71 و 107) وجود دارد که از بقیه مهمتر هستند. تغییر مهمی در توزیع قدرت تحریک قانون در هدایت فرمان و سیستم های TPS مشاهده شد، که بر پیچیدگی بالای هر دو سیستم تأکید دارد. این نتایج پیش بینی می گردند چون در یک پارک معکوس ماهرانه، ماشین باید سرعت و هدایت فرمان خود را مکررا در گردش های زیاد کنترل کند تا از برخورد با موانع اطراف خود خودداری کند.
سیستم ترمز تغییر کوچک تری را در مقایسه با TPS یا سیستم هدایت فرمان نشان میدهد. فقط دو قانون ضروری شناسایی شده است (قوانین 4 و 46). این مسئله عمدتاً بخاطر خصوصیات ترمز در سیستم پارک کردن است. معمولاً ترمز برای مدت زمان نسبتاً کوتاهی اعمال می گردد و در بقیه زمان ها بصورت غیرفعال باقی می ماند. نتیجه گیری های مشابهی برای سیستم شناسایی محل پارک اعمال می گردد، که فقط 3 قانون (قوانین 4، 5 و 6) از 13 قانون وجود دارد که اغلب تحریک میگردند. همچنین، 3 قانون (قوانین 1، 2 و 3) حذف می گردند که نشاندهنده قوانین کم اهمیت یا ضعیفی هستند که ممکن است به بروز خطا در هنگام اجرا کمک کنند.
ساختار مبنای قانون نهایی ایجاد شده توسط فرآیند آموزش در شکل 5 بصورت خلاصه بیان شده است. ردیف سوم تعداد برچسب های ورودی (= دسته ها) را در هر بعد ورودی (ویژگی) بدست آمده از آموزش نشان میدهد.

 


شکل 5 – ساختار GenSoYagerFNN برای نمونه مانور پارک معکوس

 

در اینجا برای توضیح دریافت شهودی و راحتی تعبیر قوانین فازی ایجاد شده توسط GenSoYagerFNN، تحلیل مبنای قانون سیستم شناسایی پارک کردن معرفی می گردد. 13 قانون ایجاد شده در سیستم شناسایی وجود دارد، که با 13 برچسب ورودی و 3 برچسب خروجی مرتبط هستند. در این سیستم، ورودی های GenSoYagerFNN شامل 3 ویژگی هستند: فاصله چپ-جلو (حسگر طرف چپ-جلو)، فاصله چپ-وسط (حسگر طرف چپ-وسط)، و فاصله چپ-عقب (حسگر طرف چپ-عقب). فاصله چپ-جلو دارای 5 سری فازی است، درحالیکه فاصله چپ-وسط و فاصله چپ-عقب بترتیب دارای 5 و 3 سری فازی هستند. سری گزینه های فازی استخراج شده از سیستم شناسایی پارک بشرح زیر است:
ورودی "فاصله چپ-جلو" =
{خیلی کوتاه، کوتاه، متوسط، بلند، خیلی بلند}
ورودی "فاصله چپ-وسط" =
{خیلی کوتاه، کوتاه، متوسط، بلند، خیلی بلند}
ورودی "فاصله چپ-عقب" =
{خیلی کوتاه، کوتاه، متوسط، بلند، خیلی بلند}
خروجی "شناسایی" =
{خاموش، نیمه فعال، روشن}

 

همانطور که از روی شکل 4 میتوان دید، قوانین فازی که برای سیستم شناسایی پارک بیشتر تحریک می شوند، قوانین 4، 5 و 6 هستند. با در نظر گرفتن قانون 4، قانون فازی مطابق استخراج شده از مبنای قانون سیستم شناسایی را میتوان بصورت زیر تنظیم کرد:
اگر فاصله چپ-جلو متوسط باشد و
فاصله چپ-وسط متوسط باشد و
فاصله چپ-عقب متوسط باشد
پس شناسایی روشن خواهد بود

 

نتیجه گیری بالا نشان میدهد که محل پارک مناسب شناسایی می گردد و بنابراین ماشین متوقف می گردد و تنظیم پارک کردن انجام می شود. قوانین فازی استخراج شده برای فرآیند شناخت انسانی شهودی هستند، و همانطور که توسط نتایج اثبات می گردد، قانون 4 (که بیشتر از بقیه تحریک می گردد) با دانش انسانی شناسایی محل پارک در فرآیند پارک معکوس مطابقت دارد.

 


شکل 6 – مؤلفه های کیفیت مانور

 

عملکرد GenSoYagerFNN در مانور پارک معکوس نیز از دیدگاه کیفیت پارک کردن بررسی شد، همانطور که توسط موقعیت نهایی ماشین در محل پارک تعیین شده است. منطقه محل پارک طوری طراحی می گردد که یک ماشین پارک شده بصورت ایده آل هم از لحاظ عرض و هم از لحاظ عرض منطقه در مرکز قرار می گیرد. 8 فاصله در نظر گرفته شده (f1, f2, l1, l2, r1, r2, b1 و b2) در شکل 6 نشان داده شده اند، که L طول و W عرض منطقه پارک است. کیفیت کامل زمانی بدست می آید که ماشین در مرکز قرار گرفته باشد و بنابراین زمانی می باشد که مقادیر پارامتر طوری هستند که و . مقادیر بهینه برای طول ماشین و عرض آن در معادله 4 بیان شده است.

وقتی که ماشین در منطقه پارک قرار دارد، حداقل سه مقدار فاصله برای شناسایی صحیح موقعیت و جهت گیری آن مورد نیاز است (بعنوان مثال، دو مقدار فاصله از یک طرف یکسان برای شناسایی جهت گیری آن به علاوه افست از آن طرف. با یک مقدار فاصله دیگر از طرف دیگر همسایه با طرف قبلی، اطلاعات دقیق موقعیت را میتوان بدست آورد. در این آزمایش، فقط از سه حسگر l2، b1 و b2 استفاده شده است و کیفیت پارک را میتوان به شکل انحراف استاندارد (بعنوان مثال در معادله 5) بیان کرد.

در این آزمایش، منطقه پارکی با طول 40 و عرض 25 در کنار جاده ای با عرض 37 قرار داده شد (شکل 7). ابعاد ماشین است.

 

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله   27 صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله مقاله ترجمه شده سیستم پارک کردن اتوماتیک خودرو-اموزشی