فی بوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی بوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود دفترچه راهنمای فرایند تهیه طرح های هادی روستایی

اختصاصی از فی بوو دانلود دفترچه راهنمای فرایند تهیه طرح های هادی روستایی دانلود با لینک مستقیم و پر سرعت .

دانلود دفترچه راهنمای فرایند تهیه طرح های هادی روستایی


دانلود دفترچه راهنمای فرایند تهیه طرح های هادی روستایی

در این بخش دفترچه راهنمای فرایند تهیه طرح های هادی روستایی از بنیاد مسکن انقلاب اسلامی برای دانلود قرار داده شده است. این دفترچه در 91 صفحه و با فرمت PDF می باشد. در ذیل فهرست مطالب کامل این دفترچه به همراه تعدادی از صفحات نمونه  آن آورده شده است. در صورت تمایل می‌توانید این محصول را از فروشگاه خریداری و دانلود فرمایید.

 

 

 

 

فهرست مطالب :

بخش اول : نقشه های پایه طرح هادی روستایی

  • مقدمه
  1. انطباق سیستم مختصات نقشه های پایه طرح هادی به سیستم مختصات UTM
  2. ایجاد وحدت رویه در نام گذاری لایه های برداشت شده توسط مشاوران نقشه بردار
  3. ضرورت برداشت مرز قطعات ملکی (Parcel limits)
  4. آماده سازی اجزای گرافیکی نقشه برای دستیابی به ساختار توپولوژی

بخش دوم : تهیه طرح هادی روستایی

فصل اول : تولید فایل و فولدر طرح هادی روستایی

  • مقدمه
  1. نام گذاری پوشه ها
  2. نام گذاری لایه های اطلاعاتی
  3. تکمیل فرم های اطلاعات کلی نقطه روستایی

فصل دوم : به هنگام سازی نقشه پایه

  • مقدمه
  1. آماده سازی نقشه پایه
  2. نظام کدگذاری قطعات ملکی (Parcel limits)
  3. طراحی فرم برداشت میدانی

فصل سوم : ایجاد ساختار توپولوژی

  1. ویرایش گرافیکی نقشه پایه طرح هادی و ایجاد ساختار توپولوژی
  2. تهیه بانک داده های مکانی ویژگی های کالبدی روستا در وضع موجود

فصل چهارم : نقشه های طرح هادی

  • مقدمه
  • نرم افزار Autodesk Map
  • نرم افزار ArcGIS
  • نقشه کاربری اراضی وضع موجود
    • طبقه بندی داده های نقشه کاربری اراضی
    • مشخصات بانک اطلاعاتی لایه کاربری اراضی وضع موجود
    • مشخصات لایه های پشتیبان تهیه نقشه های کاربری اراضی وضع موجود
  • نقشه کیفیت ابنیه و موقعیت بناها وبافت های با ارزش و فضاهای نیازمند بهسازی و نوسازی
  • نقشه مالکیت اراضی روستا
  • نقشه مراحل گسترش کالبدی روستا
  • نقشه محله بندی روستا
  • نقشه شبکه معابر موجود و سلسله مراتب آن
  • سایر نقشه های وضع موجود روستا
  • تهیه نقشه های پیشنهادی روستا
    • نقشه کاربری اراضی پیشنهادی
    • نقشه شبکه معابر پیشنهادی

فصل پنج : تهیه نقشه کاربری اراضی پیشنهادی

فصل ششم : تهیه گزارش طرح هادی

منابع و ماخذ

 


دانلود با لینک مستقیم


دانلود دفترچه راهنمای فرایند تهیه طرح های هادی روستایی

دانلود تحقیق ارتباط بین طیف خروجی و کاواک در لیزر نیمه هادی

اختصاصی از فی بوو دانلود تحقیق ارتباط بین طیف خروجی و کاواک در لیزر نیمه هادی دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق ارتباط بین طیف خروجی و کاواک در لیزر نیمه هادی


دانلود تحقیق ارتباط بین طیف خروجی و کاواک در لیزر نیمه هادی

در این پایان نامه، ساختارهای مختلف لیزر نیمه هادی و خروجی آنها مورد بررسی قرار گرفته است و عوامل موثر بر این خروجی ها همچون جریان آستانه و تلفات اپتیکی بیان شده است. در نهایت با استفاده از طیف های دیود لیزری طول کاواک لیزر محاسبه شده است.

ساختار دیود لیزری از 5 لایه رونشستی توسط دستگاه LPE تهیه شده است که ضخامت لایة میانی یا لایة فعال برابر 05/0 میکرون می باشد. چگالی ناخالصی توسط دستگاه SIMS مورد بررسی قرار گرفته است که نشان می دهد چگالی ناخالصی در عرض لایه رونشستی کاملاً یکنواخت است و ضخامت لایه ها از 8 میکرون تا 05/0 میکرون به وسیله دستگاه AFM اندازه گیری شده است. شدت جریان آستانه در حدود A/cm2 70 برای تراشه ای به طول و عرض 200*300 میکرون محاسبه شده است. مدهای ظاهر شده در شدت جریان بالاتر از آستانه، Ith ، کاملاً مشهود است که نشان می دهد دیود ساخته شده پرتو لیزری از خود تابش می کند. در نهایت با استفاده از رابطه طول کاواک برای طیف‌های به دست آمده محاسبه شده که مقدار 206 میکرون به دست آمده است که با مقدار تجربی 6% خطا وجود دارد.

 

 چکیده
فصل اول : مقدمه ای بر لیزر (مبانی لیزر)
مقدمه
هدف
شباهت و تفاوت لیزر نیمه هادی با سایر لیزر ها
خواص بار یکه لیزر
انواع لیزر
وارونی انبوهی
پهن شدگی طیفی و انواع آن
انواع کاواک نوری (فیدبک)
برهم نهی امواج الکترومغناطیسی
 فصل دوم : لیزر نیمه هادی و انواع ساختار آن
مواد نیمه هادی
بازده گسیل خودبخودی
 انواع باز ترکیب
گاف انرژی و انواع آن
وارونی انبوهی و روش پمپاژ در لیزر نیمه هادی
اتصال p- n اولین تحقق لیزر نیمه هادی
انواع ساختار ها
ساختار DFB
تاثیرات دما به طیف گسیلی ساختار ها
مختصری راجع به بحث نوری
 لیزر های نیمه هادی و دیود های نور گسیل
جریان آستانه – خروجی
روش های بهبود و افزایش بازده کوانتومی داخلی
 لزوم اتصالات اهمی
فصل سوم : طیف خروجی لیزر نیمه هادی و عوامل مؤثر بر آن
تغییرات چگالی جریان آستانه و فشار هیدروستاتیکی
واگرایی پرتو خروجی
خروجی ساختار ها
محاسبه پهنای طیف در لیزر های نیمه هادی در ساختار های مختلف
انواع پهنای طیف
کوک پذیری لیزر نیمه هادی
روابط و معادلات مهم در تولید و بازترکیب حامل ها
بهره در حالت پایا و جریان آستانه
اهمیت کاواک لیزر
مدهای تولید شده در داخل کاواک
تفاوت اساسی مدهای طولی و عرضی
 فصل چهارم : بررسی و تحلیل طیف های خروجی (کار های تجربی)
پیشنهادات و نتایج
انواع اتصال دیود و طیف خروجی
۱- مشخصه ولتاژ- جریان (V- I)
۲- مشخصه جریان- مقاومت دینامیکی
۳- مشخصه جریان- توان (P- I)
۴- مشخصه جریان- راندمان کوانتومی دیفرانسیلی
۵- مشخصه توان طول موج
نمودارهای تجربی
نتایج
پیشنهادات
منابع فارسی
منابع لاتین

 

شامل 120 صفحه فایل word


دانلود با لینک مستقیم


دانلود تحقیق ارتباط بین طیف خروجی و کاواک در لیزر نیمه هادی

203-حل نمونه سوالات افزاره های نیمه رسانا یا اداوات نیمه هادی

اختصاصی از فی بوو 203-حل نمونه سوالات افزاره های نیمه رسانا یا اداوات نیمه هادی دانلود با لینک مستقیم و پر سرعت .

203-حل نمونه سوالات افزاره های نیمه رسانا یا اداوات نیمه هادی

تعدادی از سوالات ترجمه و به زبان فارسی حل شده و بخشی دیگر از سوالات از مثالهای کتاب هست که به زبان انگلیسی قرار داده شده

سوالات فارسی از بخش ماسفت و پیوند دیود انتخاب شده است

10 صفحه حل سوالات ترجمه شده و 28 سوالات انگلیسی با جواب


دانلود با لینک مستقیم


203-حل نمونه سوالات افزاره های نیمه رسانا یا اداوات نیمه هادی

تحقیق درباره بررسی و ارزیابی دستگاه نیمه هادی چهارلایه تیرستور

اختصاصی از فی بوو تحقیق درباره بررسی و ارزیابی دستگاه نیمه هادی چهارلایه تیرستور دانلود با لینک مستقیم و پر سرعت .

تحقیق درباره بررسی و ارزیابی دستگاه نیمه هادی چهارلایه تیرستور


تحقیق درباره بررسی و ارزیابی دستگاه نیمه هادی چهارلایه تیرستور

فرمت فایل : word (قابل ویرایش) تعداد صفحات : 41 صفحه

 

 

 

 

تعریف :

تیریستور یک وسیله نیمه هادی چهار لایه سه اتصالی با سه خروجی است و از لایه های نوع p و n سیلیکونی که به طور متناوب قرار گرفته اند ساخته شده اند .. ناحیه p انتهایی آند ، ناحیه n انتهای کاتد و ناحیه p داخلی دریچه یا گیت[1] است . آند از طریق مدار به طور سری به کاتد وصل می شود . این وسیله اساساً یک کلید است و همواره تا زمانی که به پایانه های آند و دریچه ولتاژ مثبت مناسبی به کاتد اعمال نشده است در حالت قطع (حالت ولتاژ مسدود کننده ) باقی می ماند و امپدانس بینهایتی از خود نشان خواهد داد . در حالت وصل و عبور جریان بدون احتیاج به علامت[2] (یا ولتاژ) بیشتری روی دریچه به عبور جریان ادامه خواهد داد . در این حالت به طور ایده آل هیچ امپدانسی در مسیر جریان از خود نشان نمی دهد . برای قطع کلید و یا برگرداندن تیریستور به حالت خاموشی بایستی روی دریچه علامت و یا ولتاژی نباشد و جریان در مسیر آند به کاتد به صفر تقلیل یابد . تیریستور عبور جریان را فقط در یک جهت امکان پذیر می سازد .

اگر به پایانه های تیریستور ولتاژ بایاس خارجی اعمال نشود ، حاملهای اکثریت در هر لایه تا زمانی که ولتاژ الکتروستاتیکی داخلی[3] به وجود آمده از انتشار بیشتر حاملها جلوگیری کند ، منتشر می شوند . اما بعضی از حاملهای اکثریت انرژی کافی جهت عبور از سد تولید شده توسط میدان الکتریکی ترمزکن[4] هر اتصال را دارد . این حاملها پس از عبور ، تبدیل به حاملهای اقلیت می شوند و می توانند با حاملهای اکثریت ترکیب شوند . حاملهای اقلیت هر لایه نیز می توانند توسط میدان الکتریکی ثابتی در هر یک از اتصالها شتابدار شوند ، ولی چون در این حالت (از خارج ولتاژی اعمال نمی شود) مدار خارجی وجود ندارد مجموع جریانهای حاملهای اقلیت و اکثریت بایستی صفر شود .

حال اگر یک ولتاژ بایاس با یک مدار خارجی برای حمل جریانهای داخلی منظور شود ، این جریان ها شامل قسمتهای زیر خواهند
بود.

جریان  ناشی از :

1-عبور حاملهای اکثریت (حفره ها ) از اتصال

2-عبور حاملهای اقلیت از اتصال  

3-حفره های تزریق شده به اتصال  که از طریق ناحیه n اشاعه
می یابند اتصال
 را قطع می کند .

4-حاملهای اقلیت از اتصال  که از طریق ناحیه n اشاعه یافته و از اتصال  عبور کرده است . عیناً  نیز از شش قسمت و  از چهار قسمت تشکیل خواهد یافت .

برای تشریح اصول کار تیریستور از دو روش متشابه[5] مدلهای دیودی و یا دو ترانزیستوری می توان استفاده کرد .

ادامه...


دانلود با لینک مستقیم


تحقیق درباره بررسی و ارزیابی دستگاه نیمه هادی چهارلایه تیرستور

پایان نامه بررسی اثر خطای اتصالی در هادی های CTC

اختصاصی از فی بوو پایان نامه بررسی اثر خطای اتصالی در هادی های CTC دانلود با لینک مستقیم و پر سرعت .

پایان نامه بررسی اثر خطای اتصالی در هادی های CTC


پایان نامه بررسی اثر خطای اتصالی در هادی های CTC

این فایل در قالب ورد و قابل ویرایش در  90 صفحه می باشد.

 

فهرست

فصل اول : آشنایی با مراحل کلی طراحی ترانسفورماتور       ۱
۱-۱-مقدمه     ۲
۱-۲-طراحی     ۴
۱-۳-آزمایش ها    ۵
۱-۴- محاسبات هسته             ۹
۱-۵-ساختمان هسته    ۱۳
فصل دوم : انواع سیم پیچی های ترانسفورماتور و ساختمان آنها    ۱۴
۲-۱-مقدمه     ۱۵
۲-۲-تعاریف     ۱۵
۲-۲-۱ سیم پیچی    ۱۵
۲-۲-۲ فاز ترانسفورماتور             ۱۶
۲-۲-۳ جزء سیم پیچ    ۱۶
۲-۲-۴-هادی موازی    ۱۶
۲-۲-۵ انواع هادی ها    ۱۸
۲-۲-۶ سیم پیچ با هادی های درهم شده         ۱۹
۲-۴-ساختمان سیم پیچ های لایه ای         ۳۱
فصل سوم : ساختار هادیهای CTC            ۳۹
۳-۱-مقدمه     ۴۰
۳-۲-معرفی هادی CTC             ۴۱
۳-۳- ساختمان هادی    CTC             ۴۳
۳-۴- توصیفی از جابجایی Transposition         ۴۶
۳-۵-بوبین ساخته شده از هادی CTC         ۴۷
۳-۶-ابعاد هادی های CTC با عایق کاغذی         ۴۷
۳-۷-بررسی اثر موقعیت خطا در بوبین         ۵۱
۳-۷-۱ بررسی اثر موقعیت خطا در بوبین با هادی دو قلو       ۵۲
۳-۸-مدل مداری هادی CTC             ۵۸
۳-۸-۱- چگونگی بدست آوردن مقادیر اندوکتانس های هادی CTC   ۵۸
۳-۸-۲-روش حل مدار در مدلسازی هادی CTC        ۶۵
۳-۸-۳-بررسی علت عدم تعادل جریان در رشته های موازی    ۶۸
۳-۹-نرم افزار CTCFMS             ۷۰
فصل چهارم : نتایج عددی و تحلیل چند ترانسفورماتور نمونه    ۷۴
تحلیل خطا در چند ترانسفورماتور نمونه         ۷۵
فصل پنجم : نتیجه گیری و پیشنهادات         ۸۱
۵-۱-نتایج کلی بدست آمده از پروژه         ۸۲
۵-۲-پیشنهادات    ۸۳
مراجع      ۸۴

مراجع:

[۱] S.V. Kulvarni, S.A. Kaparde, “Transformer Engineering Design and Practice” Marcel Deker, New York, 2004

[2] S.Rao, “Power Transformers and Specials Transformers – Principles and Practice” 3rd edition, Khanna Publisher, Dehli, 2004

[3]محمدرضا مشکوه الدینی “ترانسفورماتورهای قدرت” انتشارات دانشگاه صنعت آب و برق  ۱۳۸۵

[۴] Girgis, R.S, Ed G.te Nyenhuis ” Experimental Invstigation on effect of Core

Production Attributies” IEEE transaction on Power Delivery, Vol. 13, No. 2, Apr 1998

[5] E. Rahimpour, “ Modeling of Transformer Winding in order to Detect of Mechanical Deformation, Ph.D. Desertion, ECE Department, University of Tehran, Iran, April 2002

[6] S.E. Zochol et al, “ Transformer modeling as applied to differential protection “ Schweitzer Engineering Laboratories, Inc. , 2004

[7] خلیل ولی پور “مدلسازی و شبیه سازی مشروح حالت گذرای ترانسفورماتور خشک” رساله دکتری، دانشکده مهندسی برق، دانشگاه خواجه نصیرالدین طوسی، ۱۳۸۶

۱-۱-مقدمه

طراحی ترانسفورماتور یعنی آماده سازی نقشه‌های اجرایی ترانسفورماتور اولین گام در ساخت آن است.

 برای شروع کار محاسبه و طراحی حداقل مشخصات زیر باید ارائه شود:

-         قدرت نامی ترانسفورماتور

-         ولتاژهای فشار قوی و ضعیف و گروه برداری

-         امپدانس اتصال کوتاه، تلفات بی باری و بارداری

-         ارتفاع،  دما، درصد رطوبت نسبی و آلودگی محیط نصب

-         استانداردها

در بعضی مواقع پاره‌ای مشخصات ویژه نیز اعمال می‌نمایند به عنوان مثال محدودیت در چگالی شار یا چگالی جریان و یا محدودیت در ابعاد فیزیکی ترانسفورماتور. پس از دریافت اطلاعت و بر اساس مدارک موجود قسمت فعال ترانسفورماتور شامل سیم پیچیها، هسته و مواد عایقی محاسبه می‌وند.

مدارک و استانداردهای مورد استفاده دیگر عبارتند از VDE و DIN و IEC.

ترانسفورماتور طراحی شده را می‌توان به دو گروه نرمال و ویژه تقسیم کرد:

-    منظور از ترانسفورماتور نرمال ترانسفورماتور هایی می‌باشند که به طور گسترده در شبکه توزیع مصرف دارند و بدین جهت به طور گسترده تولید می‌شوند . ترانسفورماتورهای ۲۰۰kVA و ۱۰۰ ۵۰ و ۲۵ ، گروه برداری Yzn5 و نسبت ولتاژی ۲۰kV4%/0.4kV

-         ترانسهای ویژه دارای شرایط خاصی هستند که توسط مشتری ارائه می‌شوند و تولیدی محدود دارند.

ترانسفورماتور های توزیع عموماً دارای سیستم خنک کنندگی ONAN و Tap changer به صورت Off Load می‌باشند که برای ردیف‌ ۲۰ کیلوولت، سه پله و برای ردیف ۳۰ کیلو ولت، پنج پله می‌باشند.

۱-۲-طراحی

طراحی ترانسفورماتور یعنی اجرای محاسبات مکانیکی جهت دفع حرارت ناشی از تلفات و هم چنین آماده سازی نقشه‌های مکانیکی ترانسفورماتور. مراحل مختلف این کار عبارتند از:

-         طراحی هسته

-         طراحی ابعاد برد شامل انتخاب نبشی‌ها یا تسمه‌های مناسب

-         طراحی ساختمان جمعی سیم پیچیها

-    سیم بندیهای فشار قوی و فشار ضعیف (در فشار ضعیف انتخاب شینه‌های انعطاف پذیر در توانهای بالا، خمکاری تسمه‌های خروجی از بوبین جهت تعیین ارتفاع، مهار تسمه‌ها با استفاده از بستهای چوبی، تعیین حداقل فاصله تا مرکز بوشینگها و در فشار قوی با توجه به گروه برداری تعیین قطر و طول سیمهای اتصال دهنده فازها جهت ایجاد گروه برداری مناسب، انتخاب کلید تنظیم ولتاژ)

-         طراحی در پوش با توجه به ابعاد و سوراخکاری برد

-         طراحی مخزن شامل محاسبات مکانیکی جهت محاسبه تعداد، عمق، گام و ارتفاع و رله‌ها

۱-۳-آزمایش ها

یکی از مباحث مهم ترانسفورماتور آزمایش و تست ترانسفورماتور برای حصول اطمینان از کیفیت الکتریکی و حرارتی ترانسفورماتور می‌باشد. این آزمایشات طبق استاندارد IEC-60076  انجام می‌شود و به طور کلی به سه بخش تقسیم می‌شوند:

تستهای روتین – تستهای نوعی – تستهای ویژه

۱-۳-۱-تستهای روتین

اینگونه تستها، تستهای غیر مخرب می‌باشند و می بایست طبق استاندارد بر روی تمامی ترانسفورماتورها انجام گیرند. برای ترانسفورماتورهای توزیع این تستها عبارتند از :

-    اندازه گیری نسبت تبدیل : این اندازه گیری در بی باری یعنی در حالتیکه ثانویه ترانسفورماتور مدار باز می باشد انجام می پذیرد در این حالت از افت ولتاژ ناشی از جریان بی باری می‌توان صرفنظر کرد.

-    گروه برداری: این تست با تست نسبت تبدیل تلفیق شده است چون در صورتیکه نسبت تبدیل درست باشد می‌توان اطمینان پیدا کرد که گروه برداری هم مشکل نخواهد داشت.

-    اندازه گیری مقاومت سیم پیچها: مقدار مقاومت سیم پیچ جزء مقادیر گارانتی شده از طرف سازنده نیست اما داشتن آن برای محاسبه تلفات بار در دمای ۷۵ درجه (مطابق استاندارد) و نیز برای تعیین میزان جهش حرارتی سیم پیچ در آزمایش لازم است. این اندازه‌گیری در دمای محیط انجام می‌پذیرد و با توجه به آنکه مقاومت سیم پیچ تابعی از دماست می بایست نتیجه اندازه‌گیری را به دمای ۷۵ درجه انتقال  داد. لازم به ذکر است برای ثبت مقاومت اندازه گیری شده مقدار دما نیز باید ثبت شود.

-    اندازه گیری شدت جریان و تلفات بی باری: هرگاه ترانسفورماتور تحت ولتاژ و فرکانس نامی قرار گیرد و طرف دیگر آن بی بار باشد تلفات حاصل در ترانسفورماتور را تلفات بی باری و جریانی که در اینحالت ترانسفورماتور می‌کشد را جریان بی باری می‌نامند. این تلفات و جریان برای هر ترانسفورماتور متصل به شبکه حتی در زمانی که از آن بارگیری نمی‌شود وجود دارد بنابراین با توجه به پیوسته بودن آن مقدار آن باید پایین و در محدوده گارانتی باشد. این تلفات شامل تلفات فوکو، هیسترزیس، ژولی و دی الکتریک می‌باشد که از بین این موارد دو مورد آخر با توجه به کوچکی قابل صرفنظر کردن می‌ باشند. این تست از سمت فشار ضعیف انجام می‌شود و تلورانس تلفات بی باری ۱۵درصد و جریان بی باری ۳۰ درصد می‌باشد. موارد زیر در میزان جریان و تلفات بی باری موثر است: کیفیت ورقها، نحوه برش، هسته چینی و فاصله هوایی.

-    اندازه‌گیری تلفات اتصال کوتاه: در این تست فشار ضعیف را اتصال کوتاه می‌کنند و ولتاژ فشار قوی را آنقدر افزایش می‌دهیم تا جریان نامی از آن عبور کند، در اینحالت می‌توان گفت که در سمت فشار ضعیف نیز جریان نامی عبور می کند . در این آزمایش نیز با توجه به اینکه دمای محیط در مقدار مقاومت و در نتیجه تلفات بار تاثیر دارد دمای محیط می بایست ثبت شود و همچنین تلفات در دمای ۷۵ درجه محاسبه گردد. مقدار درصد ولتاژ اتصال کوتاه نیز با انتقال مقادیر بدست آمده به دمای ۷۵ درجه محاسبه می‌گردد. درصد امپدانس اتصال کوتاه برای ترانسفورماتورهای تا ۲۵۰kVA به منظور کاهش تلفات بار در شبکه ۴ درصد و برای تستهای بزرگتر جهت کاهش مقدار جریان اتصال کوتاه ۶ درصد می‌باشد.

-    تستهای عایقی: تستهایی که تاکنون گفته شد جهت اندازه‌گیری پارامترهای ترانس و کنترل مقادیر شده آن بود اما تستهای دیگری نیز وجود دارد که جهت کسب اطمینان از کیفیت عایقی ترانسفورماتور انجام می‌پذیرد این تستها برای ترانسفورماتورهای توزیع عبارتند از :

الف- تست عایقی فشار ضعیف:در این تست فشار ضعیف را به ولتاژ ۳kv متصل می‌کنند و فشار قوی و بدنه را به زمین متصل می‌کنند. مدت زمان تست ۶۰ ثانیه می‌باشد. در صورت نامناسب بودن عایقها و شکست آنها آرک خواهیم داشت. هدف از انجام این تست بررسی عایق بین بوبین فشار ضعیف از یک سو و هسته، بدنه و بوبین فشار قوی از سوی دیگر می‌باشد.

ب- تست عایقی فشار قوی: این تست مشابه تست عایقی فشار ضعیف می‌باشد و تنها ولتاژ اعمالی به فشار قوی ۵۰kV بوده و بدنه و فشار ضعیف دارای پتانسیل زمین میش‌وند . هدف از انجام این تست بررسی عایق بین بوبین فشار قوی از یک سو هسته ، بدنه و بوبین فشار قوی از سوی دیگر می‌باشد.

پ- تست ولتاژ القایی: در این تست بطرف فشار ضعیف دو برابر ولتاژ نامی اعمال می‌کنند و در نتیجه در طرف فشار قوی که بی بار است دو برابر ولتاژ نامی القا می‌شود. برای جلوگیری از به اشباع رفتن هسته فرکانس آزمایش را بالا می‌برند. در آزمایشگاه فرکانس تست ۱۵۰Hz می‌باشد بنابراین طبق رابطه t=120*fn/ft زمان تست ۴۰ ثانیه می‌باشد. این تست برای بررسی کیفیت عایق بین لایه‌های بوبینها و عایق بین فازها انجام می‌ود.

در تستهای عایقی آرک نزدن بستگی به عواملی همچون کیفیت روغن، فاصله عایقی و ایزوله‌ها دارد. جرقه گیرها را برای پرهیز از عملشان در هنگام تست بر می‌دارند.

۱-۳-۲-تستهای نوعی

 این آزمایشات به صورت مدل و نمونه ای انجام می‌شوند، بدین ترتیب که معمولاً اولین واحد از یک نوع ترانسفورماتورتحت آزمایش قرار می گیرد. از جمله این تستها می‌توان به تست حرارتی و تست ضربه اشاره کرد.

۱-۳-۳–تستهای ویژه: این تستها بر طبق خواست و با دریافت هزینه انجام می‌گیرد. از جمله این تستها می‌توان به موارد زیر اشاره کرد:

اندازه گیری سطح صدا – تحمل اتصال کوتاه واقعی -  اندازه‌گیری‌ هارمونیک جریان بی باری تست بار – تعیین ظرفیت خازنی و تانژانت دلتا- اندازه‌گیری تخلیه جزیی – اندازه‌گیری امپدانس توالی صفر

۱-۴-محاسبات هسته

-         فواصل بین ساقهای هسته، فاصله مرکز تا مرکز سیم پیچها که با توجه به قطر سیم پیچها بدست می‌آید.

-         وزن کل آهن به کار رفته در هسته محاسبه می شود.

-          تلفات اتصال کوتاه محاسبه می شود این تلفات شامل تلفات DC در سیم پیچهای HV,LV میباشد.

-         محاسبه %Uk : مهمترین پارامتری که باید به آن برسیم Uk درصد (امپدانس اتصال کوتاه) می باشد.

-         P0 را که مربوط به تلفات فوکو و هیتر زمین می‌باشد.

-         محاسبه جریان بی باری Io

-         محاسبه جریان هجومی

توضیحاتی در مورد پارامترهای مختلف ترانس:

Po (Noload loss)

عبارتست از قدرت اکتیو مصرف شده وقتی که ولتاژ نامی با فرکانس نامی به سیم پیچ اولیه در بی باری اعمال می‌شود و معمولاً شامل تلفات هسته می‌باشد.

تلفات بار (short circuit losses):

تلفات اکتیو که در شرایط نامی در ترانسفورماتور مصرف می‌شود، تلفات بار ناشی از تلفات حرارتی عبور جریان در مقاومت سیم پیچها و تلفات اضافی حاصل از جریان گردابی در سیم می‌باشد.

Uk امپدانس ولتاژ نامی :

امپدانسی است که اگر خروجی را اتصال کوتاه کنیم و درصدی از ولتاژ نامی را اعمال نماییم جریان نامی از خروجی عبور کند. امپدانس ولتاژ نامی در شبکه ایران دارای استاندارد زیر می‌باشد:

برای قدرتهای ۲۵KVA  الی ۲۰۰ KVA : %Uk = 4%

بری قدرتهای بالای ۲۵۰KVA : %Uk = 6%

Isc جریان اتصال کوتاه:

مقدار جریان در ترمینالهای خط، بعد از اینکه عناصر DC رو به کاهش گذاشتند. در مواقع نامی ، جریان اتصال کوتاه را می‌توان از روی جریان نامی و امپدانس ولتاژ (IN.Uk) بدست آورد.

 راندمان: راندمان عبارتست از قدرت اکتیو خروجی به ورودی .

 تنظیم ولتاژ (Tapping and Tapping rany)

جهت کنترل ولتاژ در سیمهای فشار قوی سرهای اضافی طراحی گردیده‌اند . این محدوده تغییر ولتاژ عبارتست از اختلاف بین ولتاژ طراحی شده و حداکثر و یا حداقل ولتاژ قابل تنظیم سیم پیچ می‌باشد. تنظیم ولتاژ‌ها نسبت به ولتاژ مبنا به صورت مثبت و منفی می باشد.

نکته مهم: نوع کلیدهای استفاده شده در ترانسفورماتورهای توزیع از نوع (off load) off circuit بوده و هنگام عملیات روی کلید و تغییر پله‌های تنظیم ولتاژ می بایست ترانسفورماتور از دو سمت بی برق باشد.

جریان هجومی: جریانی است که در لحظه برقرار کردن برق از سیم پیچ می‌گذرد.


دانلود با لینک مستقیم


پایان نامه بررسی اثر خطای اتصالی در هادی های CTC