فی بوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی بوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

سیم پیچی ژنراتور

اختصاصی از فی بوو سیم پیچی ژنراتور دانلود با لینک مستقیم و پر سرعت .

سیم پیچی ژنراتور


سیم پیچی ژنراتور این مطلب از مطالب آزاد موجود در اینترنت جمع آوری شده است و در مورد سیم پیچی ژنراتور و در 19 صفحه می باشد و در زیر قسمتی از متن آورده شده است :
وظیفه تولید ولتاژ بالای لازم برای ایجاد اشعه ایکس را درتیوب ژنراتورهای ولتاژ بالا بر عهده دارند. تغذیه این ژنراتورها از برق v 220 شهر به گونه تکفاز و یا سه فاز می باشد که خروجی ای تاحد kv 150 در مدت زمان کوتاهی تولید می کند. این بخش از سیستم رادیولوژی از یک جعبه فلزی متصل به زمین و پر از روغن و ترانسفورماتور ولتاژ پائین برای تغذیه فیلمان ها، همچنین یک ترانسفورماتور ولتاژ بالا و مجموعه ای از دیودهای یکسوکننده ولتاژ بالا و تعدادی کنتاکتور تشکیل شده است. وجود روغن درون جعبه ژنراتور به دلیل عدم بروز جرقه الکتریکی ناشی از ولتاژ بسیار بالا می باشد.
• ژنراتورهای اشعه ایکس(X – ray Generator):
انرژی فوتون های اشعه ایکس تولید شده تابع 1- انرژی جنبشی الکترون ها، 2- اختلاف پتانسیل دو سر تیوپ است. ابتدا ولتاژی حدود kv 150 – 40 به دو قطب تیوپ اشعه ایکس اعمال می شود. الکترون هایی که توسط فیلامان تولید شده اند دراین اختلاف پتانسیل به سمت قطب آند شتاب می گیرند و پس از برخورد به هدف به فوتون هایx – ray تبدیل می شوند. اختلاف پتانسیل در سر تیوپ، موجب افزایش انرژی جنبشی الکترون ها و تولید فوتون های پر انرژی تر می گردد. هر چه ضخامت عضو بیشتر باشد، فوتون های پر انرژی تری لازم است. برای به راه اندازی تیوپ و در تولید اشعه ایکس، از ژنراتور استفاده می شود.
- وظایف ژنراتور:
1- تأمین اختلاف پتانسیل دو سر تیوپ اشعه ایکس.
2- ملتهب کردن فیلامان برای تولید الکترون.
3- کنترل اختلاف پتانسیل دو سر تیوپ.
ولتاژ مورد استفاده در ژنراتورهای اشعه ایکس از نوع ولتاژ متناوب است.
دو نوع ولتاژ متناوب داریم: 1- تکفاز و 2- سه فاز.
- نحوة تولید برق تکفاز:
مبنای کار، قانون القای الکترومغناطیسی است. در نتیجه گردش یک سیم پیچ درون میدان مغناطیسی ثابت با القای ولتاژ در سیم پیچ لازم است.
- نحوه تولید برق سه فاز:
در مولدهای سه فاز، سه سیم پیچ به طور همزمان درون میدان مغناطیسی می چرخند. هر سیم پیچ با اختلاف زاویه ˚120 نسبت به بقیه قرارگرفته است. به علت متفاوت بودن موقعیت سیم پیچ ها، مقدار ولتاژ تولیدی در هر سیم پیچ در یک زمان مشخص متفاوت است.

دانلود با لینک مستقیم


سیم پیچی ژنراتور

مقاله استفاده از تقریب پوتیه برای تخمین راکتانس پراکندگی ژنراتورها

اختصاصی از فی بوو مقاله استفاده از تقریب پوتیه برای تخمین راکتانس پراکندگی ژنراتورها دانلود با لینک مستقیم و پر سرعت .

مقاله استفاده از تقریب پوتیه برای تخمین راکتانس پراکندگی ژنراتورها


مقاله استفاده از تقریب پوتیه برای تخمین راکتانس پراکندگی ژنراتورها

لینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 

تعداد صفحه:26

فهرست و توضیحات:

مقدمه

بیان مسئله

اهمیت و ضرورت مسئله

اهداف تحقیق

پیشینه طرح پژوهش

تجزیه و تحلیل

استفاده از تقریب پوتیه برای تخمین راکتانس پراکندگی ژنراتورها

راکتانس پراکندگی آرمیچر در ژنراتورهای سنکرون نماینده بخشی از شار ماشین است که تحریک را در بر نمی‌گیرد و مسیر شار آن عمدتاً از فاصله هوایی بسته می‌شود. برای به دست آوردن پارامترهای مدار معادل و انجام مطالعات مختلف اعم از بررسی اشباع، دینامیک و غیره در ژنراتور سنکرون، در اولین قدم به اطلاعات مربوط به راکتانس پراکندگی نیاز خواهیم داشت. به طور معمول این راکتانس توسط سازنده ارایه می‌شود. با این وجود در بسیاری از واحدهای نیروگاهی قدیمی در شبکه برق ایران، این راکتانس به صورت مشخص توسط سازنده ارایه نشده است.
در این مقاله سعی شده است با استفاده از تکنیک تخمین پوتیه در بالاترین نقطه‌ای در ناحیه اشباع ماشین که امکان استخراج راکتانس پوتیه موجود باشد،‌مقداری تقریبی برای راکتانس پراکندگی ماشین محاسبه شود. این روش برای دو گروه ژنراتور انجام شده است که در گروه اول راکتانس مورد نظر توسط سازنده داده شده است ودر گروه دوم اطلاعاتی از راکتانس مورد نظر در دست نیست. در نهایت میزان خطا و مقادیر راکتانس به دست آمده در واحدهای مختلف ارایه شده است.


دانلود با لینک مستقیم


مقاله استفاده از تقریب پوتیه برای تخمین راکتانس پراکندگی ژنراتورها

دانلود مقاله فانکشن ژنراتور کنترل شونده با میکرو کنترولر

اختصاصی از فی بوو دانلود مقاله فانکشن ژنراتور کنترل شونده با میکرو کنترولر دانلود با لینک مستقیم و پر سرعت .

 

 

 

 

 

 

 

فانکشن ژنراتور کنترل شونده با میکرو کنترولر

 

فهرست مطالب
عنوان صفحه
مقدمه……………………………………………………………………… 3
چکیده مطالب....................................................................................................... 3
فصل اول
- مشخصات و محدوده مدار...………………………………..………………………5
- خلاصه ای از مدار................................................................................................... 5
- ایجاد موج مثلثی و مربعی.......................................................................................... 6
- محاسبات مدار....................................................................................................... 8-7
- موج سینوسی و محاسبه.........................................................................................12-9
- کنترل خروجی......................................................................................................... 12
فصل دوم
- میکرو کنترلر.................................................................................................... 16-13
- ساختار برنامه..........................................................................................................17
- فلوچارت برنامه..................................................................................................20-18
- برنامه میکرو..................................................................................................30-210
- نتیجه گیری............................................................................................................31

 

 

 


مقدمه
سیگنال ژنراتور( مولد پالس) وسیله ای است برای تولید انواع موجهای سینوسی، مربّعی و مثلثی که معمولا در در آزمایشگاههای الکترونیکی به عنوان منبع سیگنال برای مدارهای الکترونیکی ازآن استفاده می کنند. با توجه به عنوان پروژه ،کنترل این مدار به وسیله یک میکروکنترولر که واسط بین کاربر و سیستم می باشد صورت میگیرد.
چکیده مطالب:
در این پروژه از آی سی های مولد این سه پالس استفاده نشده است و میبایست مدار داخلی این آی سی ها شبیه سازی می شد. بدین منظوراز آمپ امپها برای تولید امواج مربعی و مثلثی و از یک مدارشامل مقاومت و دیودها برای تولید موج مثلثی استفاده شده است که کنترل دامنه و فرکانس و نوع موج بوسیله یک میکرو صورت میگیرد. در فصل اول مشخصات و خلاصه ای از مدار و قطعات استفاده شده و نحوه و مدار مولد پالس مربعی ومثلثی و پالس سینوسی و محاسبات مدار و نحوه کنترل مدار بوسیله میکرو مورد نظر آورده شده است و در فصل دوم فلوچارت برنامه و برنامه میکرو که به زبان C نوشته شده و نتیجه پروژه تهیه شده و در آخر پروژه ،DATA SHEET قطعات استفاده شده آورده شده است.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

فصل اول:
میکرو استفاده شده وسیله ای برای کنترل و تنظیم نوع خروجی ،فرکانس وآفست و ...می باشد.
مشخصات و محدوه این مدار:
انواع موج خروجی : مثلثی ، مربعی، سینوسی
محدوده دامنه : 15 الی 15-
محدوده فرکانس: 50HZ-30KHZ

 

خلاصه ای از مدار
در این سیستم از قطعات زیر استفاده شده.
میکرو کنترولر سری AVR (ATMega16L) برای کنترل سیستم
یک عدد LCD دو در شانزده متنی برای نمایش خروجی با کاربر
چهار عدد میکرو سویچ برای کنترل سیستم
op amp برای ایجاد موج مثلّثی و مربعی
چند عدد دیود زنر و 1N4148 و مقاومت برای ایجاد موج سینوسی
آی سی 4051 و 4052 و AD7523 برای کنترل فرکانس ،گین و نوع خروجی
LCDوچند عدد کلید برای نمایش اطلاعات و نیز تغییر امکانات
برای تغذیه از رگولاتور مثبت ومنفی 15و5 ولت استفاده شده است

 

ایجاد موج مثلثی و مربعی

 

در اینجا برای ایجاد موج مثلثی از یک انتگرال گیر با آپ امپ استفاده کرده ایم با توجه به شکل فوق .... آپ امپ سمت راست این انتگرال گیر می باشد در طرف چپ مدار از یک مدار اشمیت تریگر استفاده شده است با بالا رفتن ولتاژ انتگرالگیر این اشمیت تریگر سویچ میکند سپس با فعال کردن ترانزیستور مقاومت R/2 فعال شده وباعث میشود که مدار انتگرال گیر به صورت معکوس عمل کرده و ایجاد یک رمپ منفی میکند. به این ترتیب از خروجی آپ امب اول موج مثلثی و از خروجی آپ امپ دوم مربعی گرفته میشود.
محاسبات مدار
در صورتی که ترانزیستور غیر فعال باشد ولتاژ سر پایه منفی برابر Vc/2 میباشد و پس جریان عبوری از R برابر
(Vc - Vc/2) /R = Vc/(2R)
و با شارژ شدن خازن و فرمول آن ولتاژ خروجی برابر
Vo = 1/C( Vc/2R)t+V0 = (Vc/2RC)t
از آن طرف ولتاژ اشمیت ترگر برابر با توجه به مقادیر داخل نقشه و نیز زمین بودن + V برابر 1/3 ولتاژ تغذیه می باشد .
زمانی که این ولتاز نیاز دارد تا به ولتاژ ماکزیمم وسپس به حالت اول برسد چهار برابر میباشد در این صورت فرکانس ( 1/t ) به صورت زیر در می آید
f = 1/t =4 * (Vc / Vpp) * (1/2RC) = ( Vc/Vpp ) * (2/RC)
Vpp= 1\3 Vc
برای تغییرات در این فرکانس میتوان باکمک تغییر در مقدار Vc ویا خازن مدار پرداخت
در اینجا برای کنترل فرکانس در مقادیر کم از Vc استفاده شده است. برای این منظور از کنترل دیجیتال یکی از دو کانال مبدل آنالوگ به دیجیتال آسی AD7528 استفاده میکنیم .
این ای سی دارای دو مبدل آنالوگ به دیجیتال میباشد که یکی از آن برای این منظور ودیگری در جای دیگر بدان پرداخته میشود.
و برای تغییرات بالا خازن را می بایست تغییر داد که در اینجا از آنالوگ سویچ 4051 که یک دیکدر یک به هشت میباشد استفاده میکنیم .
مقادیر خازنهای استفاده شده به صورت زیر میباشد.
2.2p , 22p, 220p, 2.2n, 22n ,220n

 

 

 

موج سینوسی
برای ایجاد موج سینوسی از چند منبع ولتاژ که به وسیله دیود زنر ایجاد شده است وچند مقاومت خاص از موج مثلثی تولید میگردد. (مدار شکل زیر)

این مدار موج مثلثی به شکل موج تقریبا سینوسی تبدیل میکند .منابع تغذیه انتخاب شده برابر 2.2 ولت 3.3، 4.7،5.1 میباشد در پیک مثبت در بین ولتاژ سفر تا 2.2+0.7 دیود هیچ کدام از دیودها فعال نمیباشند در این صورت ولتاژ ورودی با ولتاژ خروجی برابر می باشد اما بعد از آن تا ولتاژ 4 ولت فقط دیود اول فعال میباشد در این صورت مقاومت 62k و مقاومت 10k باعث کاهش نسبی ولتاژ میگردد برای بقیه دیودها این وضع ادامه میابد تا به ولتاژ سینوسی برسیم.
چگونگی محاسبه
چون شیب رمپ برابر شیب در نقطه صفر در موج سینوسی می باشد داریم
Vsin = A Sin(Pi/2 t);
Vramp = B t
Vsin’ (0) = Vramp’(0);
A Pi/2 Cos(Pi/2 t) = B
A = 2B / pi
A دامنه موج سینوسی و B دامنه موج رمپ می باشد که با توجه به مقدار گرفته شده 10 ولت برای موج مثلثی مقدار موج سینوس در حدود 6.36 به دست می آید.
فرض کنید n عدد دیود فعال شده باشند در این صورت ولتاژ موج سینوسی برابر با Vsin1 باشد در این صورت ولتاژ موج مثلثی برابر
(Vramp – Vsin)/R = (Vsin – V1)/R1 +(Vsin – V2)/R2+…+(Vsin – Vn)/R

 

برای محاسبه مقاومت اول فرض را بر این گذاشه که مقاومت 10K را انتخاب کرده چون دیود اول در ولتاژ 2.9 وصل میشود .میتوان به راحتی مقدار 6.2 را برای مقاومت اول بدست آورد.وهمچنین با داشتن این مقاومت میتوان مقاومت بعدی را بدست آور تا به مقاومت نهایی رسید.
قابل ذکر است به علت متقارن بودن مدار فقط نیاز به محاسبه نصف مدار میباشد و مقاومت های منفی را ازآن همان مقاومتهای قسمت مثبت میباشد.

 


کنترل خروجی
برای آنکه خروجی را نیز کنترول کرد از نظر نوع موج و دامنهاز دو آی سی 4052 وAD7528 نصف آن استفاده شده است .
آی سی 4052 یک آنالگ سویچ یک به چهار میباشد که باآن نوع موج خروجی ( مربعی، مثلثی و سینوسی ) را انتخاب میکنیم این آی همانند ای سی 4051 میباشد . خروجی این ای سی به Vref آسی AD7528 رفته که همان آسی که برای کنترل فرکانس هم استفاده میگردد.
ای اسی در این صورت مانند یک ولوم عمل کرده و ولتاژ را کاهش داده که با یک تقویت کنده opamp ی به مقدار ولتاژ مورد نظر رسید در این صورت کار کنترول دامنه نیز به صورت دیجیتال در آمده است.

 

میکروکنترولر Atmega16L
این میکرو دارای 32 تا I/O میباشد
ولتاژ تغذیه 5.5 تا 2.7 را میتواند تحمل کند
دارای K16 بایت حافظه فلش (قابل برنامه ریزی)
و1024 بایت Ram میباشد
واز فرکانسهای m1وm2وm4وM8 را بطور داخلی استفاده میکند

 

در اینجا این میکرو برای کنترول سیستم استفاده میشود که به وسیله 4 کلید که برروی برد تعبیه شده است میتوان کنترول سیستم را به دست گرفت .
برای برنامه نویسی میکرو کنترلر AVR زبان C که در قالب codveiton استفاده میکنیم.
برای کنترل کلیدها که یک سر آنها به زمین وصل شده است و دیگری به میکرو، به طور داخلی به وسیله ریجسترهای کنترول پورت میکرو پولاپ شده که هنگامی که کلیدی فشار داده نشده باشد عدد یک خوانده و در صورت فشار دادن کلید عدد صفر را میکرو بخواند.
برای خواندن کلید از تابع GetKey() استفاده شده است
این تابع چک میکند که آیا کلیدی فشار داده شده است یا خیر . در صورتی که کلید ی فشار داده شود مطابق با آن در خروجی عددی قرار میدهد .
LCD Text
این وسیله برای نمایش خروجی سیستم میباشد.که دارای دو سطر 16 کاراکتری است.
فرکانس خروجی ،دامنه خروجی ونوع موج خروجی در اینLCD قابل نمایش میباشد.
دستورات مورد نیاز

 

lcd_init(16);
این دستور راه انداز LCD Text میباشد که چگونگی کارکرد آنرا تنظیم میکند.
lcd_gotoxy(0,3);
این دستور برای بردن خط نشان به نقطه مورد نظر میباشد به عنوان مثال مکان نما را به خط اول کاراکتر چهارم میبرد .
lcd_putchar('0');
این دستور یک کاراکتر مورد نظر را در جای مکان نما قرار می دهد .
lcd_puts (str);
این دستور برای نمایش یک سری کاراکتر بر روی LCD میباشد. این دستور کاراکتر ها را از داخل حافظه RAM برداشته و بر روی LCD نشان می دهد.
lcd_putsf("KHz ");
این دستور برای نمایش یک سری کاراکتر بر روی LCD میباشد. این دستور کاراکتر ها را از داخل حافظه Flash برداشته و بر روی LCD نشان می دهد.
این دستورات در فایل Lcd.H ذخیره شده است که با دستورinclude <lcd.h>#_ فرا خوانی میگردد .
دستور دیگری که در این برنامه استفاده شده است دستور
void define_char(char flash *pc,char char_code)
میباشد که برای ایجاد کاراکتر جدید میتوان از آن استفاده نمود.برای اطلاع بیشتر به راهنمای این برنامه مراجعه شود.
در اینجا چند دستور دیگر مورد برسی قرار میگیرد.
delay_ms(100);
این دستور برای ایجاد تاخیر در برنامه میشود .
ltoa(256,srt);
این دستور برای تبدیل عدد به کدASCII که LCD بتواند آن را نمایش بدهد.

 


ساختار برنامه :
این برنامه ابتدا بعد از تظیم نمودن مقادیر اولیه سیستم به داخل حلقه بی نهایت While() می افتد که اصل بر نامه در اینجا قرار دارد. سیستم منتظر میماند تا کلیدی فشار داده شود .
در صورتی که کلید Select باشد باعث تعویض متغیر سیستم می شود که بین متغیر های نوع خروجی ، دامنه خروجی و فرکانس آن در حال گردش می باشد به عنوان مثال در صورتی بروی نوع موج باشد به سراغ دامنه می رود.
در صورتی که کلید up وDown باشد متغیر مورد نظر را تغیر داده و خروجی آنرا در سخت افزار اجرا میکند

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


برنامه نرم افزاری

 

 

 

This program was produced by the
CodeWizardAVR V1.23.8c Standard
Automatic Program Generator
©

 

Project :
Version :
Date : 1/8/2005
Author : n.aslani
Company :
Comments:

 


Chip type : ATmega16L
Program type : Application
Clock frequency : 1.000000 MHz
Memory model : Small
External SRAM size : 0
Data Stack size : 256
*********************************************/

 

#include <mega16.h>
#include <delay.h>
#include <stdlib.h>
// Alphanumeric LCD Module functions
#asm
.equ __lcd_port=0x12
#endasm
#include <lcd.h>

 

// Declare your global variables here
#define DAC_PORT PORTA
#define DAC_PIN_WR PORTB.4
#define DAC_PIN_E PORTB.3
#define DAC_PIN_AB PORTB.2

 

#define F51_PIN0 PORTB.5
#define F51_PIN1 PORTB.6
#define F51_PIN2 PORTB.7

 

#define F52_PIN0 PORTB.0
#define F52_PIN1 PORTB.1

 

#define Key_Select PINC.0
#define Key_Up PINC.3
#define Key_Down PINC.2

 


void define_char(char flash *pc,char char_code)
{
char i,a;
a = (char_code<<3) | 0x40;
for (i=0; i<8; i++) lcd_write_byte(a++,*pc++);
}

 

 

 

void WriteDAC7528(unsigned char DAC,unsigned char AB )
{
DAC_PORT = DAC;
if (AB)
{
DAC_PIN_AB =1;
}
else
{
DAC_PIN_AB =0;
};
DAC_PIN_WR = 0 ;
DAC_PIN_E = 0;
#asm("nop")
DAC_PIN_WR = 1 ;
DAC_PIN_E = 1;
}

 


flash char ChMosalasi [] ={ 0x00,0x00,0x00,0x00,0x00,0x11,0x0A,0x04};
flash char ChMosalasi2[] ={ 0x00,0x04,0x0A,0x11,0x00,0x00,0x00,0x00};
flash char ChMoraba [] ={ 0x00,0x00,0x07,0x04,0x04,0x1C,0x00,0x00};
flash char ChMoraba2 [] ={ 0x00,0x00,0x1C,0x04,0x04,0x07,0x00,0x00};
flash char ChSin [] ={ 0x01,0x02,0x04,0x04,0x04,0x08,0x10,0x00};
flash char ChSin2 [] ={ 0x10,0x08,0x04,0x04,0x04,0x02,0x01,0x00};
flash char ChFelesh2 [] ={ 0x00,0x04,0x08,0x1F,0x08,0x04,0x00,0x00};
flash char ChFelesh [] ={ 0x00,0x04,0x02,0x1F,0x02,0x04,0x00,0x00};
#define LSignalX 11
#define LSignalY 0
#define LGainX 1
#define LGainY 0
#define LFrequencyX 1
#define LFrequencyY 1
#define LFrequencyX2 15

 


void SetOutputSignal(unsigned char Mode )
{
switch( Mode )
{
case 0: // mosalsi
F52_PIN0 = 0;
F52_PIN1 = 0;
define_char(ChMosalasi ,0);
define_char(ChMosalasi2,1);
break;
case 1: // sin
F52_PIN0 = 1;
F52_PIN1 = 0;
define_char(ChSin ,0);
define_char(ChSin2 ,1);
break;
default : // Moraba
F52_PIN0 = 0;
F52_PIN1 = 1;
define_char(ChMoraba ,0);
define_char(ChMoraba2 ,1);
}
lcd_gotoxy(LSignalX,LSignalY);
lcd_putsf("\8\9\8\9\8");

}
void SetGain(unsigned char A )
{
char str[10];
WriteDAC7528(A,1);
lcd_gotoxy(LGainX,LGainY);

 

lcd_putsf("G=");
itoa((A/20),str);
lcd_puts (str);
lcd_putchar('.');
itoa((int)(A%20)*5,str);
lcd_puts (str);
lcd_putsf("v ");

}
void SetFrequency(unsigned char Ftq ,unsigned char DBFtq)
{
unsigned char str[10];
unsigned long int K;
Ftq +=50;
switch( DBFtq)
{
case 0: //1 Hz
F51_PIN0 = 1;
F51_PIN1 = 0;
F51_PIN2 = 1;
K = 1;
break;
case 1: //10 Hz
F51_PIN0 = 0;
F51_PIN1 = 0;
F51_PIN2 = 1;
K = 10;
break;
case 2: //100 Hz
F51_PIN0 = 1;
F51_PIN1 = 1;
F51_PIN2 = 0;
K = 100;
break;
case 3: //1k Hz
F51_PIN0 = 0;
F51_PIN1 = 1;
F51_PIN2 = 0;
K = 1;
break;
case 4: //10k Hz
F51_PIN0 = 1;
F51_PIN1 = 0;
F51_PIN2 = 0;
K = 10;
break;
case 5: //100k Hz
F51_PIN0 = 0;
F51_PIN1 = 0;
F51_PIN2 = 0;
K = 100;
break;
}

WriteDAC7528(Ftq,0);
lcd_gotoxy(LFrequencyX,LFrequencyY);
lcd_putsf("Frq =");

K = K * Ftq;
ltoa((K/100),str);
lcd_puts (str);

if ((K%100) != 0)
{
lcd_putchar('.');
ltoa((K%100),str);
lcd_puts (str);
}
if (DBFtq >= 3)
lcd_putsf("KHz ");
else
lcd_putsf("Hz ");
}

 

char GetKey()
{
static char KeySelect_Dwon;
static char KeyUp_Dwon;
static char KeyDown_Dwon;

 

if (Key_Select == 0)
{
delay_ms(10);
if (KeySelect_Dwon==0)
{
return 0xFF;
}
KeySelect_Dwon=0;
return 1;
}
else
KeySelect_Dwon=1;

 


if (Key_Up == 0)
{
delay_ms(30);
if (KeyUp_Dwon!=0)
{
delay_ms(100);
KeyUp_Dwon=0;
}
return 3;
}
else
KeyUp_Dwon=1;

 

if (Key_Down == 0)
{
delay_ms(30);
if (KeyDown_Dwon!=0)
{
delay_ms(100);
KeyDown_Dwon=0;
}
return 2;
}
else
KeyDown_Dwon=1;
return 0xFF;

 


}

 


void main(void)
{
// Declare your local variables here
unsigned char OutputSignal = 0 ,
Gain = 20,
FrequencyHigh = 1,
FrequencyLow = 50;

 

// Input/Output Ports initialization
// Port A initialization
// Func0=Out Func1=Out Func2=Out Func3=Out Func4=Out Func5=Out Func6=Out Func7=Out
// State0=0 State1=0 State2=0 State3=0 State4=0 State5=0 State6=0 State7=0
PORTA=0x00;
DDRA=0xFF;

 

// Port B initialization
// Func0=Out Func1=Out Func2=Out Func3=Out Func4=Out Func5=Out Func6=Out Func7=Out
// State0=0 State1=0 State2=0 State3=0 State4=0 State5=0 State6=0 State7=0
PORTB=0x00;
DDRB=0xFF;

 

// Port C initialization
// Func0=In Func1=In Func2=In Func3=In Func4=In Func5=In Func6=In Func7=In
// State0=P State1=P State2=P State3=P State4=P State5=P State6=P State7=P
PORTC=0xFF;
DDRC=0x00;

 

// Port D initialization
// Func0=In Func1=In Func2=In Func3=In Func4=In Func5=In Func6=In Func7=In
// State0=T State1=T State2=T State3=T State4=T State5=T State6=T State7=T
PORTD=0x00;
DDRD=0x00;

 

// Timer/Counter 0 initialization
// Clock source: System Clock
// Clock value: Timer 0 Stopped
// Mode: Normal top=FFh
// OC0 output: Disconnected
TCCR0=0x00;
TCNT0=0x00;
OCR0=0x00;

 

// Timer/Counter 1 initialization
// Clock source: System Clock
// Clock value: Timer 1 Stopped
// Mode: Normal top=FFFFh
// OC1A output: Discon.
// OC1B output: Discon.
// Noise Canceler: Off
// Input Capture on Falling Edge
TCCR1A=0x00;
TCCR1B=0x00;
TCNT1H=0x00;
TCNT1L=0x00;
OCR1AH=0x00;
OCR1AL=0x00;
OCR1BH=0x00;
OCR1BL=0x00;

 

// Timer/Counter 2 initialization
// Clock source: System Clock
// Clock value: Timer 2 Stopped
// Mode: Normal top=FFh
// OC2 output: Disconnected
ASSR=0x00;
TCCR2=0x00;
TCNT2=0x00;
OCR2=0x00;

 

// External Interrupt(s) initialization
// INT0: Off
// INT1: Off
// INT2: Off
GICR|=0x00;
MCUCR=0x00;
MCUCSR=0x00;

 

// Timer(s)/Counter(s) Interrupt(s) initialization
TIMSK=0x00;

 

// Analog Comparator initialization
// Analog Comparator: Off
// Analog Comparator Input Capture by Timer/Counter 1: Off
// Analog Comparator Output: Off
ACSR=0x80;
SFIOR=0x00;

 

// LCD module initialization
lcd_init(16);

 

define_char(ChFelesh ,7);
define_char(ChFelesh2 ,6);
SetOutputSignal(OutputSignal);
SetGain( Gain);
SetFrequency(FrequencyLow,FrequencyHigh);
while (1)
{
unsigned char Key ;
unsigned char op ;
Key = GetKey();

lcd_gotoxy(0,3);
lcd_putchar(Key+'0');
if (Key == 1)
{
op++;
if ( op > 4) op =1;
switch(op )
{
case 1: // Signal
lcd_gotoxy(LFrequencyX2,LFrequencyY);
lcd_putchar(' ');
lcd_gotoxy(LSignalX-1,LSignalY);
lcd_putchar(7);
break;
case 2: // GainX
lcd_gotoxy(LSignalX-1,LSignalY);
lcd_putchar(' ');
lcd_gotoxy(LGainX-1,LGainY);
lcd_putchar(7);
break;
case 3: // Frequency
lcd_gotoxy(LGainX-1,LGainY);
lcd_putchar(' ');
lcd_gotoxy(LFrequencyX-1,LFrequencyY);
lcd_putchar(7);
break;
case 4: // Frequency Low
lcd_gotoxy(LFrequencyX-1,LFrequencyY);
lcd_putchar(' ');
lcd_gotoxy(LFrequencyX2,LFrequencyY);
lcd_putchar(6);
break;
}
}
if (Key == 2)// Key up
{
switch(op )
{
case 1: // Signal
OutputSignal ++;
if (OutputSignal >2)
OutputSignal=0;
SetOutputSignal(OutputSignal);
break;
case 2: // Gain
Gain ++;
SetGain(Gain);
break;
case 3: // Frequency
FrequencyHigh ++;
if (FrequencyHigh >5)
FrequencyHigh =5;

 

SetFrequency(FrequencyLow,FrequencyHigh);
break;
case 4: // Frequency Low
FrequencyLow ++;
if (FrequencyLow >200)
FrequencyLow =200;
SetFrequency(FrequencyLow,FrequencyHigh);
break;
}
}
if (Key == 3)// Key Down
{
switch(op )
{
case 1: // Signal
OutputSignal ++;
if (OutputSignal >2)
OutputSignal=0;
SetOutputSignal(OutputSignal);
break;
case 2: // Gain
Gain --;
SetGain(Gain);
break;
case 3: // Frequency
FrequencyHigh --;
if (FrequencyHigh >5)
FrequencyHigh =0;
SetFrequency(FrequencyLow,FrequencyHigh);
break;
case 4: // Frequency Low
FrequencyLow --;
if (FrequencyLow >200)
FrequencyLow =0;
SetFrequency(FrequencyLow,FrequencyHigh);
break;
{
{
نتیجه گیری :
این مدار برای تولید امواج سینوسی، مثلثی، مربعی در محدوده دامنه 15 الی 15- ولت در محدوده فرکانس 50 هرتز الی 30 کیلو هرتز کار میکند. در اینجا به چند مورد از اشکالات مدار اشاره می شود که این مشکلات ناشی از قطعات استفاده شده در این مدار می باشد.
Opamp : این المان تا فرکانس 1MHZ می تواند کار کند ولی به دلیل Slowreat آن برای پیک ولتاژ بالاتر کاربرد کمتری دارد.به علت این مشکل در فرکانسهای بالا مشکلات زیادی بوجود می آید.
آنالوگ سویچ ها : این دو IC در هر پایه خازنهای معادل چند پیکو فاراد دارند که هنگام استفاده از فازهای کوچک با آنها موازی میشوند و با مقدار خازن استفاده شده جمع شده و ایجاد اختشاش میکند.
با توجه به نوع چیدما نمدار و استفاده از برد سوراخ دار سلفها و خازنهای ناخواسته در مدار ایجاد می شود که باعث ناپایداری و ایجاد هارمونیک هایی از فرکانس در درون مدار میگردد

 

 

 

 

 

 

 

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله    30صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله فانکشن ژنراتور کنترل شونده با میکرو کنترولر

پروژه پایانی ماشین های ژنراتور 168 صفحه فایل ورد

اختصاصی از فی بوو پروژه پایانی ماشین های ژنراتور 168 صفحه فایل ورد دانلود با لینک مستقیم و پر سرعت .

پروژه پایانی ماشین های ژنراتور 168 صفحه فایل ورد


پروژه پایانی ماشین های الکتریکی 168 صفحه فایل ورد

پیشگفتار

ماشینهای الکتریکی جریان یکسو ژنراتورهایی هستند که انرژی مکانیکی را به انرژی الکتریکی جریان یکسو تبدیل می‌کنند یا موتورهایی که انرژی الکتریکی جریان یکسو را به انرژی مکانیکی تبدیل می‌کند. بیشتر ماشنیهای جریان یکسو از این جهت که درونشان ولتاژها و جریانهای متناوب سینوسی دارند با ماشینهای جریان متناوب سینوسی مشابهند. علت داشتن خروجی جریان یکسو وجود مکانیزمی است که ولتاژ متناوب درونی را در پایانه‌های ماشینها به ولتاژ یکسو تبدیل می‌کند.

اصول کار پایه‌ای ماشینهای جریان یکسو بسیار ساده‌اند، متاسفانه، این اصول به علت ساختمان پیچیده این نوع ماشینها تا حدودی در پرده ابهام می‌مانند. این ماشینها با قابلیت همه کاره بودن خود مشخص می‌شوند.


دانلود با لینک مستقیم


پروژه پایانی ماشین های ژنراتور 168 صفحه فایل ورد

دانلود مقاله ژنراتور الکتریکی

اختصاصی از فی بوو دانلود مقاله ژنراتور الکتریکی دانلود با لینک مستقیم و پر سرعت .

 

 

مقدمه
قبل از اینکه ارتباط بین مغناطیس و الکتریسته کشف شود، ژنراتورها از اصول الکتروستاتیک بهره می‌بردند. ماشین ویمشارت از القای الکتروستاتیک یا تأثیر کردن استفاده می‌کرد. ژنراتور واندوگراف از اثر تریبوالکتریک برق مالشی برای جدا سازی بارهای الکتریکی با استفاده از اصطکاک بین عایقها استفاده می‌کرد. ژنراتورهای الکتروستاتیک کارآمد نیستند و تنها برای آزمایشات علمی که نیازمند ولتاژهای بالا است، مناسب هستند.

 

 

 

 

 

فارادی

 

در سال 1831–1832م مایکل فارادی کشف کرد که بین دو سر یک هادی الکتریکی که بصورت عمود بر یک میدان مغناطیسی حرکت می‌کند، اختلاف پتانسیلی ایجاد می‌شود. او اولین ژنراتور الکترومغناطیسی را بر اساس این اثر ساخت که از یک صفحه مسی دوار بین قطبهای یک آهنربای نعل اسبی تشکیل شده بود. این وسیله یک جریان مستقیم کوچک را تولید می کرد.

 

دینامو
دینامو اولین ژنراتور الکتریکی قادر به تولید برق برای صنعت بود و کماکان مهمترین ژنراتور مورد استفاده در قرن بیست و یکم است. دینامو از اصول الکترومغناطیس برای تبدیل چرخش مکانیکی به یک جریان الکتریکی متناوب ، استفاده می‌کند. اولین دینامو بر اساس اصول فارادی در سال 1832 توسط هیپولیت پیکسی که یک سازنده تجهیزات بود، ساخته شد. این وسیله دارای یک آهنربای دائم بود که توسط یک هندل گردانده می‌شد. آهنربای چرخنده بگونه‌ای قرار داده می‌شد که یک تکه آهن که با سیم پوشانده شده بود، از قطبهای شمال و جنوب آن عبور می‌کرد. پیکسی کشف کرد که آهنربای چرخنده ، هر بار که یک قطبش از سیم پیچ عبور می‌کند، تولید یک پالس جریان در سیم می‌کند. به علاوه قطبهای شمال و جنوب آهنربا جریانها را در جهتهای مختلف القا می‌کنند. پیکسی توانست با اضافه کردن یک کموتاتور جریان متناوب تولیدی به این روش را به جریان مستقیم تبدیل کند.
دیناموی گرام
به هر حال هر دوی این طرحها دارای مشکل یکسانی بودند: آنها پرشهای جریانی القا می‌کردند که از هیچ چیز پیروی نمی‌کرد. یک دانشمند ایتالیایی به نام آنتونیو پاسینوتی این مسأله را با جایگزینی سیم پیچ چرخنده توسط یک سیم پیچ حلقه‌ای که او با سیم پیچی یک حلقه آهنی درست کرده بود، حل کرد. این بدان معنی بود که آهنربا همواره از بخشی سیم پیچ عبور می‌کرد که این مسأله موجب یکنواختی جریان خروجی می‌شد. زنوب گرام چند سال بعد در حین طراحی اولین نیروگاه تجاری در پاریس در دهه 1870م ، این طرح را دوباره ابداع کرد. طراحی وی با نام دینامی گرام معروف است. نسخه‌های مختلف و تغییرات زیادی از آن هنگام تا کنون در این طراحی بوجود آمده است، اما ایده اصلی چرخش یک حلقه بی پایان از سیم ، کماکان قلب تمامی دیناموهای پیشرفته باقی ماند.
مفاهیم
دانستن این مطلب مهم است که ژنراتور تولید جریان الکتریکی می‌کنند و نه بار الکتریکی که در سیمهای سیم پیچی‌اش وجود دارد. این تا حدودی شبیه یک پمپ آب است که ایجاد یک جریان آب می‌کند اما خود آب را ایجاد نمی‌کند. ژنراتورهای الکتریکی دیگری هم وجود دارند، اما بر اساس دیگر پدیده‌های الکتریکی نظیر: پیزو الکتریسته و هیدرو دینامیک مغناطیسی ، ساختار یک دینامو شبیه یک موتور الکتریکی است و تمام انواع عمومی دیناموها می‌توانند مانند موتورها کار کنند. همچنین تمامی انواع عمومی موتورهای الکتریکی می‌توانند مانند یک ژنراتور کار کنند.
ژنراتور اشعه ایکس
یک مولد یا ژنراتور اشعه ایکس وسیله‌ای است که انرژی الکتریکی را جهت لامپ اشعه ایکس فراهم می‌نماید. در واقع این وسیله انرژی مکانیکی را به انرژی الکتریکی تبدیل می‌نماید. این ژنراتور با یک منبع انرژی الکتریکی شروع می‌شود و سپس این انرژی را به نحوی تغییر می‌دهد تا نیاز لامپ اشعه ایکس را مرتفع سازد. لامپ به دو منظور به انرژی الکتریکی نیازمند است. ابتدا برای ملتهب نمودن فیلمان (کاتد) و تابش الکترون از آن ، سپس شتاب دادن به این الکترونها از کاتد به سمت آند. ژنراتور اشعه ایکس برای هر کدام از این اعمال دارای یک مدار خاص می‌باشد که به ترتیب مدار فیلمان و مدار ولتاژ قوی نامیده می‌شوند.

 

 

 

قسمتهای مختلف ژنراتور اشعه ایکس
صفحه کنترل ژنراتور
صفحه کنترل شامل یک کلید اصلی جهت روشن نمودن دستگاه ، دو عدد وسیله اندازه گیری که میزان حقیقی MA وKVP را در خلال تولید اشعه ایکس اندازه گیری می‌نماید، است.
مجموعه مبدل
دومین جز ژنراتور اشعه ایکس یعنی مجموعه مبدلها یک جعبه فلزی با اتصال زمین پر شده از روغن است. این جعبه شامل یک مبدل کاهنده برای مدار فیلمان و یک مبدل افزاینده برای مدار ولتاژ قوی می‌باشد. بنابراین یک مبدل وسیله‌ای است که ولتاژ را در یک مدار افزایش یا کاهش می‌دهد. این قسمت شامل دو سیم پیچ می‌باشد که به دو طرف یک حلقه آهنی پیچیده شده است. هنگامیکه جریان از میان سیم پیچ اول عبور می‌نماید، یک میدان مغناطیسی در یک حلقه آهنی ایجاد شده و موجب القای یک جریان در سیم پیچ ثانویه می‌گردد. اما این نکته مهم است که یک جریان فقط هنگامی در مدار ثانویه عبور می‌نماید که میدان مغناطیسی افزایش و کاهش یابد.
هنگامیکه میدان مغناطیسی در حالت پایدار است، هیچ جریانی از مدار عبور نخواهد کرد. به این علت استفاده از یک جریان ثابت مستقیم (مانند جریان یک باتری) در سیم پیچ اولیه قادر به ایجاد یک جریان مداوم در سیم پیچ ثانویه نمی‌باشد. بکار گیری جریان متناوب در مبدلها به علت آن است که این نوع جریان بوسیله یک اختلاف پتانسیل تولید شده و بطور مداوم اندازه و به صورت متناوب جهت آن تغییر می‌نماید. یعنی مهمترین مشخصه جریان متناوب تغییر پیوسته ولتاژ آن می‌باشد که بدین ترتیب یک میدان مغناطیسی که دائما در حال تغییر است، ایجاد می‌نماید.

 



لامپ اشعه ایکس

 

انواع مبدل
یک مبدل با تعداد دور‌های بیشتر در سیم پیچ ثانویه نسبت به سیم پیچ اولیه موجب افزایش ولتاژ می‌گردد که بدین ترتیب آن را یک مبدل افزاینده می‌نامند. یک مبدل با دوره‌های کمتر در سیم پیچ ثانویه موجب پایین آوردن ولتاژ شده و به نام مبدل کاهنده نامیده می‌شود.
اتو ترانسفورماتور و وظایف آن
ولتاژ تحویلی به اتاق رادیوگرافی از طریق یک اتو ترانسفورماتور به ژنراتور اشعه ایکس متصل می‌گردد. اتو ترانسفورماتور دارای چندین وظیفه است که به شرح زیر می‌باشد.
1. فراهم آوردن ولتاژ لازم برای مدار فیلمان.
2. فراهم آوردن ولتاژ لازم برای مدار اولیه مبدل ولتاژ قوی.
3. فراهم آوردن یک محل مناسب برای قرار دادن وسیله نمایش KVP که نشانگر ولتاژ اعمال شده به دو سر لامپ است.
یک اتو ترانسفورماتور شامل یک سیم پیچ منفرد بر روی یک هسته آهنی لایه لایه بوده و بر اساس اصل خود القایی کار می‌کند. اعمال یک جریان متناوب ، یک میدان مغناطیسی در اطراف هسته القا خواهد نمود. که این میدان با تمام دورهایی که سیم پیچ را تشکیل می‌دهد، در ارتباط است و با انتخاب نقطه اتصال مناسب می‌توان تعداد دورهای لازم برای فراهم کردن ولتاژ مورد نیاز سایر اجزای ژنراتور اشعه ایکس را فراهم آورد. اتو ترانسفورماتور در یک محدوده بسیار کوچک می‌تواند عمل یک مبدل افزاینده یا کاهنده را انجام دهد.
ژنراتور آبی

 

 

 

 

 

 

 

 

 

 

 


ژنراتور نیروگاه آبی
ژنراتــــــور مهمترین بخــــش نیــــروگاه آبی اســـت که انـــــرژی مکـــــانیکی دورانـــی را تبدیـــــل به انرژی الکــــتریکی مــی‎کند و از دو بخــــش اصلــــی روتــور و استاتور تشکیل شده است.
ژنراتورهای نوع سنکرون عمودی شامل بخش‎های زیر می‎باشند:
- قاب استاتور(Stator Frame)
- هسته استاتور( Stator Core)
- سیم‎پیچ استاتور(ُStator Winding)
- روتور(Rotor)
- حلقه مورق روتور(Rotor Rim)
- قطبها(Poles)
- یاتاقان‎های کف‎گرد(Thrust Bearing)
- یاتاقان‎های هادی(Guide Bearing)
- سیستم روانکاری هیدوراستاتیک(Hydrostatic lubrication system)
- سیستم خنک‎کننده Cooling system
- واحد ترمز و بالابری (Braking and jacking unit)

استاتور فریم یا قاب استاتور(Stator Frame)
قاب استاتـــــور از اجـــــزاء فـولادی نورد شده ســــاخته شـده است که هســـته، سـیم‎پیچ و اجـــزاء جــــانبی اســـتاتور نظـــیرکولرهــای هوایی-آبی را روی خـــــود جـــای می‎دهد. قاب اســـتاتور با ســـاختار خـــاص خود کل وزن روتــور را از طــریق براکــت تراست تحمل می‎نمـــاید. عـــلاوه بر نیــروهای ناشی از گشــتار و وزن خود استاتـــور، قاب استاتـــور وزن کلیه اجراء گردان (ژنراتــور و توربیــــن)، وزن براکـــت تراست و بارهـای ناشـــی از فشــــار هیدرولیـــکی را از طریق سل پلیت ها یا حلقه‎هـــای نگهدارنده به فونداسیــــون منتقل می‎نمـــاید. دریچه‎هـــای خـــروج هـــوا نیز در قـــاب استاتـور تعبیه شده است.در شکل زیر می توانید نمای استاتور فریم یک ژنراتور آبی با توان ۸۱ مگاولت آمپر را مشاهده نمایید.

هسته استاتور (Stator Core)
هستة استاتور مسیری با رلوکتانس مغناطیسی پایین جهت عبور شار مغناطیسی فراهم می سازد. قطر داخلی استاتور بوسیلة گشتاور در حجم( Torque Per Volume) و اثر لختی GD² تعیین می شود.
هستة استاتور از دو قسمت تشکیل شده است :
1- ( یوغYoke ) : قسمتی است که بین شیار و قطر خارجی قرار می گیرد.
2- (Teeth دندانه ها) : قسمتهایی از هسته که بین شیارها قرار می گیرد.

قسمتهای انتهایی هسته ، جهت کاهش دمای ناشی از عبور شار مغناطیسی به روش خاصی تهیه می شوند و معمولا“ در این قسمتها فاصلة هوایی بیشتر از مرکز هسته می باشد. شیارها در بدنة هستة استاتور پانچ می شوند و محل قرار گرفتن سیم پیچی استاتور می باشند.
ورقه های هسته از سیلیکن با تلفات پایین و مقاوم در برابر پیری ( Non-Aging ) و با ضخامت 5/0 میلیمتر تهیه می شوند. این ورقه ها از هر دو طرف با لایه های وارنیش عایق شده اند ( عایق کلاس F ). هسته بر روی Stator Frame نصب می شود و در ضمن هنگام ورقه چینی ، ورقه‌های لایه‌های مختلف بر روی یکدیگر همپوشانی دارند. برای محکم کردن ورقه ها ، از تعدادی Pressure Finger که بر روی Clamping Plate جوش می شوند و همچنین از تعدادی پیچ با مقطع دم‌چلچله‌ای (DoveTail ) استفاده می‌شود و ورقه ها به همدیگر پرس می شوند. در ماشینهای بزرگ از تعدادی Clamping Bolt که از هسته نیز عایق می باشند برای استحکام بیشتر استفاده می کنند.


هسته استاتــور شامل صفحات دینامو کم تلفات است که ضخامت هر یک 5/0 میلیمتر می‎باشد. برای خنک کردن هسته ، تعدادی کانال درون هسته جاسازی شده است که جنس این کانالها از تعدادی میله های غیرمغناطیسی که بر روی ورقه های سیلیکون با ضخامت 65/0 میلیمتر جوش می شوند، تشکیل شده است. جریان هوا از درون این کانالها عبور کرده و هسته را خنک می کند.
شیارهایی در داخلی ورقه‎ها تعبیه شده‎اند تا امکان استقرار سیم‎پیچ‎های استاتور فراهم گردد. وقتی که سیم‎پیچ‎ها در شیارها قرار گرفتند توسط گوه‎هایی عایق به شکل دم چلچله در محل خود ثابت شده و محل شیار پر می‎گردد.
هستة استاتور از طریق Stator Frame ، نیروهای ناشی از وقوع خطا و یا انبساط حرارتی را به فونداسیون منتقل می کند.
در شکل زیر می توان Stator Frame ، هسته و پیچهای دم چلچله ای را مشاهده نمود.
سیم پیچ استاتور (ُStator Winding) روتور و روتور هاب
در شکل زیر ، نحوه گردش هوا را در تهویة مستقل( فن با یک موتور مستقل می چرخد) یک ژنراتور آبی نمایش می دهد.



سیم‌پیچ استاتور را با نامهای سیم‌پیچ آرمیچر یا سیم‌پیچ اندویی ( Induced Winding) نیز بیان می کنند. این سیم‌پیچ شامل یک مدار الکتریکی است که ولتاژ و جریان آن ( وقتی که به شبکه وصل می شود) ، توسط یک شار مغناطیسی متغیر حاصله از "جریان روتور و حرکت روتور" ، القا می شود.
نوع ، جانمایی و ابعاد این سیم‌پیچی توسط توان نامی ، ولتاژ ، تعداد قطبها(سرعت)، نیازمندیهای ناشی از حداکثر مجاز گرم شدن سیم‌پیچی، راکتانس، راندمان و هزینه کمتر تعیین می شود.
انواع سیم‌پیچ به صورت زیر می باشند :
1- کلاف ( چند دور)( Coil)
2- Bar (تک دور)

سیم پیچ استاتور از هادیهای مستطیلی تشکیل شده که به منظور اعمال ولتاژ مورد نظر و انجام تستهای معین ، نسبت به هم عایق شده اند. سیم پیچ استاتور معمولا“ به صورت ستاره به هم متصل شده و دارای 3 ترمینال فاز و 3 ترمینال زمین می باشد. سیم پیچ استاتور از دو ماده گرانقیمت عایق و مس ساخته شده که برای ساختن آن نیازمند ساعتهای کاری زیادی هستیم.
جهت ساخت سیم پیچ ، عملیاتی انجام می شود که به آن VPI یا Vacuum Pressure Impregnation گویند و با توجه به اندازه ماشین این عملیات بصورت زیر انجام می شود:
1- VPI کلی برای ماشینهای با قدرت کم و متوسط با Coil یا Bar (هسته و سیم پیج به همراه هم به کوره می روند .)
2-VPI گروهی برای ماشینهای با قدرت متوسط یا زیاد که بصورت Coil باشند ( در کوره های فولادی )
3- VPI جداگانه برای ماشینهای با قدرت متوسط یا زیاد که بصورت Bar باشند ( در کوره های مخصوص )
باید توجه کرد که Coil ها به صورت سیم پیچی حلقوی تولید می شوند که در قسمت Over-Hang ترانسپوزه شده اند ولی Bar ها به صورت سیم پیچی موجی برای ماشینهای Water Cooled و سیم پیچی حلقوی برای ماشینهای Air-Cooled با 360 درجه یا 540 درجه ترانسپوزیشن ساخته می‌شوند.
در شکل زیر می توان Bar ها و Coil ها را برای یک ژنراتور نوعی دید.


Lap Bars


Wave Bars


Coils

عایقی که برای عایق بندی سیم پیچها استفاده می شود میکالاستیک(MicaLastic) می‌باشد. این عایق از سال 1957 تا کنون استفاده می‌شود و تا به حال هیچ خطایی که ناشی از پیری این عایق باشد گزارش نشده است .
میکالاستیک دارای کلاس عایقی F بوده و تا ولتاژ 27 کیلوولت و گرادیان ولتاژ 4/2 تا 8/2 KV/mm را می‌تواند تحمل کند. میکالاستیک شامل لایه های میکای غیر آلی ( میکای نرم) بعنوان ماده اصلی بوده که تحت عملیات حرارتی در اپوکسی رزین بعنوان ماده پوشاننده قرارمی گیرد .
Coil ها یا Bar های ترانسپوز شده به صورت پیوسته توسط لایه های میکا پوشانده شده و سپس با فرایند فشار در خلاء، در اپوکسی رزین غوطه ور می گردند.
پس از عملیات (VPI) ، سیم پیچها در یک کوره با درجه حرارت بالا خشک می شوند.
پس از خشک کردن ، قسمتی از Bar که درون شیار قرار می گیرد را با یک هادی گرافیتی رنگ می کنند تا از کورونا مابین عایق و سطح شیار جلوگیری کنند.
برای کاهش گرادیان ولتاژ در قسمت خم Bar ، این قسمت با مواد نیمه هادی( tape یا رنگ ) پوشانده می شود. قبل از قرار دادن سیم پیچ در شیار یک ورقه هادی در شیار قرار می دهند تا فاصله های هوایی بین شیار و Bar را پر کند و به یک تماس الکتریکی خوب دست پیدا کنیم. برای چسبیدن Bar به ورقة هادی از یک چسب هادی ( Putty ) استفاده می شود.
باید توجه کرد که عایق هادیها در bar از جنس Fiber Glass می باشد در حالیکه عایق بین دورهای سیم پیچی در یک Coil از "میکا + Fiber Glass " استفاده می شود. عایق بین هادیهای Coil نیز به همین صورت می باشد.
در شکل زیر قسمتهای مختلف سیم پیچ را به همراه نحوة قرار دادن آن در شیار می توان دید.


در شکل زیر نیز می توانید نحوه گردش هوای تهویه را در یک ژنراتوربا استفاده از کانالهای هوای داخل روتور ریم و بدون استفاده از فن مشاهده نمایید.

 

 

 

واحد ترمز مکانیکی و بالابری(Bracking and Jacking Unit)
سیســـتم ترمز مکانیکی به گونــــه‎ای طراحــی شده تا مجمــــوعه ژنراتـــور و توربیــن را سریعـاً به حالت سکون برساند. عـــلاوه بر ترمز، این سیستم برای بالا بردن روتـــور هنگام نصــب و یا خارج کردن روتور مورد استفــــاده قرار می‎گیرند. سیستم بالابری همچنین برای خارج کردن یاتاقان‎های کف‎گرد از فشار و جدا کردن شفت توربین از ژنراتور به کار می‎رود. برای بکار انداختن ترمزها از هوا فشرده استفاده می‎شود که ترمز نرم و با تنظیم مناسب را امکان‎پذیر می‎سازد. فشار لازم برای بالابری به طور قابل توجهی بیشتر از مقدار لازم برای ترمز می‎باشد. از این‌رو این فشار توسط موتورپمپ‎ها و از طریق مدار روغن برقرار می‎شود. سیستم ترمز و بالابری توسط شیرهای سه راهه از یکدیگر مجزا می‎گردند. در شکل زیر می توانید مجموعه ای را که برای ترمز مکانیکی و جک کردن روتور بکار می رود مشاهده نمایید. معمولا" در یک ژنراتور از چند سگمنت ترمز/جک (مثلا" ۴ تا) استفاده می شود.

نمای یک سگمنت ترمز/جک


نمای یک سگمنت ترمز/جک که در زیر رینگ ترمز روتور ژنراتور قرار می گیرد.
مقایسه بین زمان، اوزان و هزینه های ساخت قسمتهای مکانیکال و الکتریکال ژنراتور آبی
با وجود اینکه ژنراتور سنکرون، منبع اصلی تولید الکتریسیته در یک نیروگاه می‌باشد و مباحث مربوط به کارکرد آن در شاخه مهندسی برق مورد بررسی قرار می‌گیرد؛ ولی بعنوان یک ماشین الکتریکی، قسمتهای بسیاری از آن توسط مهندسان مکانیک، طراحی شده و مورد بررسی قرار می‌گیرد. برای اینکه ذهنیتی نسبت به حجم عملیات مکانیکی و الکتریکی یک هیدروژنراتور سنکرون عمودی ، زمان و هزینه‌های ساخت آن بشود ، مقایسه‌ای که توسط شرکت Voith-Siemens در این مورد انجام شده است، ارایه می‌گردد.
الف- مقایسه بین مدت زمان طراحی و کار مهندسی بر روی قطعات الکتریکی و مکانیکی هیدروژنراتور:


ب- مقایسه بین اوزان تجهیزات الکتریکی و مکانیکی هیدروژنراتور:

پارامترهای اولیه مورد نیاز برای طراحی ژنراتور
زمانی که می خواهیم ژنراتوری را سفارش دهیم ، طراح نیازمند مقادیر الکتریکی زیر برای طراحی اولیه ژنراتور می باشد که باید توسط خریدار به سازنده ارائه شوند :
- توان نامی و ماکزیمم
- سرعت نامی و سرعت فرار (Runaway Speed)
- فرکانس نامی
- ممان اینرسی
- افزایش دمای مجاز
- راکتانسها ( Xd , X’d , X”d , X”q/X”d )
- نسبت اتصال کوتاه (Short Circuit Ratio)
- ثابت زمانی ها (T′do و ‏T′d و T″do )
- شرایط محیط (دمای هوا وآب سرد ورودی به رادیاتورها)
- ولتاژ نامی و محدودة مجاز تغییرات ولتاژ
- و مقادیر دیگری مانند :
# حداقل قطر داخلی ژنراتورر
# حداقل راندمان
روتــور بخش‎گردان ژنـــــراتور می‎باشـــد که شـــامل شفت، هــاب(Hub)، چـــرخ مغناطیسی(magnetic wheel) و قطبـــها مــی‌گردد. شفـت روتـور که گشـــتاور را از توربین به ژنراتور منتقل می‎نماید، با فلنـج به شفت تــــوربین متصل شـــده است. در ژنراتورهای بزرگ، شفــت شامل دو بخــــش مــی‎شود (بخـــش بالا و پائین) که به ترتیب مستقیمـــاُ به بالا و پائیـــن هاب روتور با فلنــج متصل مـــی‎شود. شفـــت که از فــــولاد با کیفیـــت بالا ســاخته شــده است به گونـــه‎ای طراحی شــــده که در مقـابل تنشهــــای ناشی از اتصـــال کـــوتاه ناگهـــانی و یا هنگام سنــــکرون کردن اشتباه، مقـــاومت نماید.
هاب روتـــور که دارای ساختار صفحه‎ای است، از ورقهـــای فولادی نورد شده با کیفیت بالا ســـاخته شده است و ارتبـــاط بین شـــفت و طوقـــه مغناطیسی روتور را ایجاد می‎کند.
کاربرد روتور هاب:
- نگهداری روتور ریم، قطبها، فن‌ها و رینگ ترمز
- انتقال گشتاور شفت به روتور ریم و قطبها
- تحمل نیروهای ناشی از Shrinkage(عمل انقباض) روتور ریم

 

انواع روتورهاب:
- روتور هاب به همراه سیلندر مرکزی ، اتصال به شفت با کمک اتصالات KEY شکل (شکل 1)
- روتورهاب به همراه فلنجهای فوقانی و تحتانی ، اتصال به شفت از طریق پیچ و مهره (شکل 2)
- روتورهاب به همراه بازشوهای فوقانی و/یا تحتانی به منظور محبوس کردن هوای تهویه (Rim Ventilation system)

شکل (۱)



شکل (۲)
روتور ریم(Rotor Rim)
روتـــور ریم (Rotor Rim) دارای ساختار مورق می‎باشــد. طوقه روتور ریم از قطعــــات مجـزای ورقه‎های فولادی تشکیـــل شده که روی هم چیـــده می‎شوند. صفحات فولادی با استحـــکام بالا و دارای هم‎پوشانی، توسط تعـــداد زیـــادی پیچ‎های محــوری که به طور یکنـــواخت روی محیط تعبیه شده‎اند بهم بسته می‎شوند.

قطبهای روتور و سیم پیچی آن
ورقه‎هـــای قطب از جنـــس فولاد با نـورد گرم می‎باشــنـد که از دو طـــرف توســط یک لایه اکسید، عایق شــده اســـت. این لایه‎هــا توسط پیچ‎های محـــوری به یکدیگر محکــم می‎شوند. صفحـــات انتهــایی ورقـــه‎های قطبهـــا را محکم نگاه داشتـــه و نیروی گریز از مرکز ناشی از سیم‎پیچ‎هـــای میـــدان را خنثی می‎نماید. سیم‎پیچ‎های میـــدان شامل نوارهای تخت مسی می‎شود که به صـــورت یک لایه دور بدنه قطب پیچیـده شده است. سیم‎پیچ‎هـــا از کفش قطـب، صفحـــه کلمـپ و بدنه قطب عایق شده‎اند. بین دورهـــای سیم‎پیچـــی نیز لایه عایقی از جنــس رزین مصنوعـــی وجود دارد، سپــس یک رزین مصنوعی به صورت تحت فشـــار و گرم بین لایه‎ها تزریق می‎شـــود تا ساختــاری محکم، فشـــرده و پایدار را ایجاد نمــاید. شینه‎های تحریک نیز سیم‎پیچــی روتـــور را به حلقه‎هــــای لغـــزان (Slip Ring)متصل می‎نماید. این شینه‎هــا از جنس مـس الکترولیتیک می‎باشــند. ارتبـــاط قطبهــا به طوقـــه روتـــور(روتور ریم) توسط شیارهــــای T شکلـــی ایجاد می‎شـــود که پایه T شـــکل قطبهـــا درون آنها مستقر می‎شود.
قطبهای برجسته در ژنراتورهای آبی
همانطور که می‌دانید، قطبهای ژنراتورهای آبی از نوع برجسته می‌باشند. این قطبها از اجزای زیر تشکیل شده‌اند:
1- سیم پیچ میدان (Field winding)
2- دمپرها
3- هسته قطب (Pole core)
قطبها وظیفه ساختن میدان مغناطیسی چرخان در فاصله هوایی بین استاتور و روتور را بر عهده دارند. در زیر شکل یک قطب برجسته ژنراتور را می توانید مشاهده کنید

دمپر(Damper)
جهت تعیین ابعاد میله های دمپر، نیازمند تعیین مقادیر زیر هستیم:
- حداکثر جریان نامتقارن مولفه منفی(I2/In) در حالت عملکرد پیوسته
- حداکثر مقدار I22t در زمان وقوع خطا
سیم‌پیچ دمپر از چندین میله مسی استوانه‌ای، روی سطح کفشک قطب و درون شیارهایی توزیع شده‌اند و در دو انتها بوسیله تسمه‌های مسیبه همدیگر جوش خورده‌اند. ارتباط بین قفسهای دمپر، توسط تسمه‌های مسی قابل انعطاف و یا از طریق بدنه قطب و روتور ریم، انجام می‌شود (نوع بسته یا باز). نوع بسته و یا باز قفس دمپر با توجه به مقدار راکتانس زیرگذرای(Sub-Transient) درخواست شده از طرف خریدار تعیین می‌شود.
تعداد میله‌های دمپر به ازای هر قطب، تابعی از تعداد شیار در قطب در فاز استاتور (تعداد شیارهایی بر روی استاتور که در یک فاز آن به ازای هر قطب وجود دارند) و همین طور راکتانس زیرگذرا می‌ باشد.
اگر از سیم‌پیچ دمپر بعنوان راه‌انداز در حالت موتوری(موتور سنکرون) استفاده شود، طراحی متفاوتی بکار می‌رود تا دمپرها بتوانند جریانهای بیشتری را تحمل کنند.
در شکل زیر، قطعات مختلف قطبهای روتور را به همراه میله‌های دمپر آن می‌توان مشاهده کرد.



هسته قطب (Pole Core)
هسته قطبها به همراه روتور ریم، مسیری با رلوکتانس پایین برای شار مغناطیسی در روتور ایجاد می‌کند. ابعاد اصلی هسته قطب، با توجه به ماگزیمم چگالی شار، راکتانس موردنظر، نیروهای گریز از مرکز و همچنین نوع تهویه، تعیین می‌شود.
هسته قطب از دو قسمت تشکیل شده است:
1- کفشک قطب(Pole Shoe) : که شکل فاصله هوایی را تعیین می‌کند.
2- بدنه قطب(Pole Body): که نشیمنگاه سیم‌پیچ تحریک می‌باشد.
بدنه قطب بصورت مستطیلی بوده و کفشک قطب بصورت قسمتی از یک سینوس بوده و کلا" ورقه‌ها با ضخامت 1 یا 2 میلیمتر پانچ شده و پس از هسته‌چینی، با Clamping Plate و پیچ به هم پرس شده و محکم می‌شوند. نحوه اتصال قطبها به روتور(روتور ریم و یا شفت) بصورت دم‌چلچله‌ای(T-Dovetail) می‌باشد. باید توجه کرد که وزن قطبها بر روی پارامتر GD2 موثر می‌باشد.
در شکل زیر هسته یک قطب به همراه بدنه عایق آن(قسمت آبی رنگ که عایق میکا می‌باشد) و همچنین نحوه قرار دادن عایق در بین لایه‌های آن را مشاهده می‌کنید.

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله 38   صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله ژنراتور الکتریکی