فی بوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی بوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود تحقیق تفرق امواج زلزله در تونل انتقال آب با در نظر گرفتن میرایی رایلی

اختصاصی از فی بوو دانلود تحقیق تفرق امواج زلزله در تونل انتقال آب با در نظر گرفتن میرایی رایلی دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق تفرق امواج زلزله در تونل انتقال آب با در نظر گرفتن میرایی رایلی


دانلود تحقیق تفرق امواج زلزله در تونل انتقال آب با در نظر گرفتن میرایی رایلی

سازه‏های زیرزمینی، مانند تونل ها نقش عمده‏ای در صنعت آب و حمل و نقل دارند. تونل ها در نیروگاه های آبی، و انتقال آب و فاضلاب به کار می‏روند. ازاینرو این نوع سازه‏ها باید مقاومت کافی در مقابل بارهای وارده را داشته باشند. حفاری در اعماق مختلف خاک به هر شکل که صورت پذیرد، منجر به تغییر توزیع تنش موجود در خاک می‏‎شود. پدیده تفرق در هنگام وقوع زلزله در سازه‏ های مدفون روی می‏دهد این پدیده در زلزله های حوزه دور و نزدیک خساراتی را به تونل و سازه های روزمینی وارد می نماید. برای مطالعه موردی تونل دوقلو شیراز مورد بررسی قرار گرفته شده است. برای این عمل ابتدا بر اساس تحقیقات گذشته پدیده تفرق مورد بررسی قرار گرفته شده است. روابط حاکم بر این پدیده در محیط های مختلف بدست آمده سپس با استفاده از نرم افزار اجزا محدود تونل و سازه های مجاور تحلیل شده اند. سپس از شبکه عصبی برای پیش بینی این پدیده بر اساس خروجی تحلیل المان محدود استفاده شده است. در پایان با استفاده از نرم افزار spss تحلیل آماری این پدیده انجام شده است. نتایج نشان می دهد که بیشینه مقدار تفرق در جابجائی افقی سازه ارگ، تحت زلزله های حوزه دور، 33.724% ، و تحت زلزله های حوزه نزدیک، 5.161% می باشد. مقدار تفرق در جابجائی کل سازه ارگ، تحت زلزله های حوزه دور، 23.68% ، و تحت زلزله های حوزه نزدیک 41.334% می باشد. بر اساس شبکه عصبی ایجاد شده در حوزه دور و نزدیک، چنانچه ورودی های شتاب زلزله، مختصات نقاط، راستای موج برخوردی و مدت زمان یک زلزله موجود باشد، بر اساس مقادیر آموزش شبکه های عصبی ایجاد شده برای زلزله حوزه دور و نزدیک، وقوع پدیده تفرق و میزان آن پیش بینی می شود. مقدار آزمون p-value در بخش تست شبکه ایجاد شده تحت زلزله های حوزه دور، 0.987 و تحت زلزله های حوزه نزدیک، 0.802 می باشد.

مقدمه

محققین بسیاری پدیده تفرق را مورد بررسی قرار داده اند اما چون در ارتباط با مورد تفرق امواج زلزله در تونل انتقال آب مطالعات بسیار کمی صورت گرفته است در این تحقیق این پدیده را بطور عددی بررسی می شود و آن مورد ارزیابی قرار می گیرد. از آنجائیکه این پدیده می تواند موجب تخریب سازه های زیرزمینی مانند تونل شود لذا بررسی این پدیده دارای اهمیت بسزایی می باشد. و نتایج حاصل از این تحقیقات می تواند کمک شایانی به ارگان های وابسته به وزارت نیرو و تونل های مترو وکلیه مشاورین و پیمانکاران بخش تونل بکند.

سازه های زیرزمینی با توجه به شرایط گسترش و توسعه شهرها، بطور فزاینده ای ساخته شده و مورد بهره برداری قرار می گیرند. تونل ها یکی از مهمترین سازه های زیرزمینی می باشد. خرابی های متعدد تونل ها تحت بارگذاری زلزله و بویژه خسارات وارد بر تونل ها (زلزله کوبه ژاپن)، موجب تحقیقات وسیعتری در زمینه ارزیابی اثر زلزله بر روی تونل ها گردید. ارتعاشات ناشی از زلزله می تواند به شکل امواج مختلف طولی و عرضی سازه های زیرزمینی را تحت تاثیر قرار داده و لذا تغییر شکل های مختلفی در این ارتعاشات اتفاق می افتد. در اثر تنش های دینامیکی امواج لرزه ای، این تنش ها به تنش های استاتیکی موجود افزوده می شوند و باعث ایجاد تنش ها و تغییر شکل های بیشتری در محیط پیرامون مقطع حفاری می گردند. چنان چه این موج به یک حفره زیرزمینی مانند تونل برخورد کند، بدلیل تغییر مشخصات خاک، قسمتی از موج تغییر مسیر داده و بخش دیگر در آن محیط انتشار می یابد، این پدیده را تفرق می گویند.

چکیده           1
مقدمه            2
فصل اول : کلیات             3
1-1-هدف         4
1-2- طراحی تونل های آبرسانی4
1-2-1- مشخصات تونل              4
1-2-1-1- شکل و ابعاد مقطع تونل                 4
1-2-1-2- امتداد تونل               4
1-2-1-3- شیب تونل                5
1-2-1-4- آب زیرزمینی             5
1-3- روش کار و تحقیق           5

فصل دوم : سوابق مطالعاتی               7
2-1- مروری بر تحقیقات گذشته                 8

فصل سوم : روابط حاکم بر مساله     28
3-1- انتشار امواج زلزله در محیط های الاستیک               29
3-1-1- مقدمه     29
3-1-2- انتشار امواج در محیط های الاستیک    29

3-1-2-1- تفرق امواج توسط سازه ‏های مدفون 29
3-1-2-2- بردارهای تنش و تغییر مکانهای میدان آزاد           31
3-1-2-2-1- موج تابشی ‍‍‍‍P باشد32
3-1-2-2-2- موج تابشیSV باشد                 33
3-2- انتشار امواج در محیط های پوروالاستیک                 34
3-2-1- تئوری Biot         34
3-2-2- عبارات جابجایی، تنش و فشار منفذی  37
3-2-3- موج برخوردی و موج تفرق یافته         38
3-2-4- معادلات حاکم بر پوشش40
3-2-5- فرمولاسیون مقدار مرزی مساله          41
3-2-6- نتایج عددی                48

فصل چهارم : نرم افزارهای کاربردی و مطالعه موردی منطقه49
4-1- مطالعه موردی             50
4-1-1- تونل دوقلو شیراز          50
4-1-2- ارگ کریم خانی           50
4-1-3- زمین شناسی و ژئوتکنیک منطقه        51
4-2- Plaxis    52
4-2-1- اطلاعات وروردی          53
4-2-1-1- پنجره عمومی          53
4-2-1-2- پنجره اصلی            53
4-2-1-3- خطوط هندسی        54
4-2-1-4- نیروها  55
4-2-1-5- مصالح 55
4-2-1-6- شبکه بندی             56
4-2-1-7- شرایط اولیه             56
4-2-2- محاسبات               57
4-2-3- خروجی                 58
4-2-4- منحنی ها               58
4-3- نرم افزار Deepsoil   59
4-4- نرم افزار Matlab      61
4-4-1- مقدمه     61
4-4-2- شبکه عصبی               63
4-4-2-1- ارزش و قابلیت یادگیری در شبکه‎های عصبی        63
4-4-2-2- ویژگی های شبکه های عصبی        63
4-5-  صحت سنجی             65
4-5-1- نرم افزار SPSS 65
4-5-2- صحت سنجی نرم افزار   65
4-5-2-1- انتشار موج یک بعدی 65
4-5-2-2- تعیین سرعت موج رایلی               66
4-5-2-3- ساختمان در معرض زلزله              67
4-5-3- صحت سنجی تز با استفاده از مقالات معتبر              68
4-5-4- نتایج spss              69
4-6- بررسی نتایج تنش و جابجائی در سازه ارگ کریم خان 70
4-6-1-  بررسی جابجائی در ارگ کریم خان     70
4-6-1-1- بررسی جابجائی در ارگ کریم خان تحت زلزله حوزه دور            70
4-6-1-2- بررسی جابجائی در ارگ کریم خان تحت زلزله حوزه نزدیک        72
4-6-2- بررسی تنش در ارگ کریم خان          73
4-6-2-1- بررسی تنش در ارگ کریم خان تحت زلزله های حوزه دور          73
4-6-2-2- بررسی تنش در ارگ کریم خان تحت زلزله های حوزه نزدیک      75
4-6-3- شبکه عصبی               77
4-6-3-1- نتایج شبکه عصبی در زلزله های حوزه دور           77
4-6-3-2- نتایج شبکه عصبی در زلزله های حوزه نزدیک       78
4-7- مطالعه موردی امواج P و SV          79

فصل پنجم : نتایج و پیشنهادات      81
5-1- نتایج      82
5-2- پیشنهادات برای ادامه کار                 83

پیوست الف : SMC و همگرایی در شبکه بندی  84
پیوست ب : بررسی جابجائی            90
پیوست پ : بررسی تنش-کرنش    102
فهرست منابع فارسی   123
فهرست منابع لاتین     124
چکیده انگلیسی          126
صفحه عنوان به زبان انگلیسی       127

شامل 141 صفحه فایل word


دانلود با لینک مستقیم


دانلود تحقیق تفرق امواج زلزله در تونل انتقال آب با در نظر گرفتن میرایی رایلی

تحقیق درباره امواج

اختصاصی از فی بوو تحقیق درباره امواج دانلود با لینک مستقیم و پر سرعت .

تحقیق درباره امواج


تحقیق درباره امواج

لینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 

تعداد صفحه:18

فهرست و توضیحات:

مقدمه

چکیده

مقدمه  

سیستم قدرت اتصالی مبدل پلامیس ( Pelamis PTO  )

انتقال قدرت هیدرواستاتیکی مرسوم و قدیمی ، که از پمپ های جفتی با جابجایی متغیر به منظور تحویل جریان و فشار متغیر سیال ، استفاده می کند ، به طور عادی یک بازده ماکزیمم در حدود 60% دارد. در این سیستم ها، راندمان از نقطه اده ال فعالیت خود به صورت قابل توجهی پایین می آید. بعلاوه ، یک سیستم قدیمی انتقال قدرت  که برای جذب کامل انرژی امواج اتفاقی ( امواج ناگهانی = incident waves    )  ارزیابی شده است ، در مقابل امواج کم قدرت و ضعیف ، فعالیتی غیراقتصادی و با ازده کم دارد.

    در مقابل ، در دستگاه PTO   هر زمان که یک محفظه انرژی مبادله سیال با انباشتگرها را تحت شرایط با فشار بالا انجام دهد، تنها موضوعاتی که باعث پایین آوردن بازده می شوند، مربوط به تراکم پذیری سیال ، اصطکاک دستگاه ها و خمیدگی لولا ها  و در نهایت جریان های از دست رفته از طریق لوله ها و دریچه ها است. بنابراین یک طراحی دقیق و هوشیارانه می تواند مجموعه این افت ها را به کمتر از 20 % در تمامی شرایط کاری برساند. قسمت انتقال قدرت اولیه پلامیس می تواند به راحتی جذب انرژی را از امواج ناگهانی تا 10 برابر نسبت به سیستم قدیمی افزایش دهد. همچنین در برابر امواج ضعیف و کم توان که در بیشتر ایام سال بر دریا حاکم هستند ، راندمان بالایی بدست می آید.


دانلود با لینک مستقیم


تحقیق درباره امواج

دانلودمقاله سد امواج طوفان New waterway

اختصاصی از فی بوو دانلودمقاله سد امواج طوفان New waterway دانلود با لینک مستقیم و پر سرعت .

 

 

 


کار مقدماتی
شش طرح
دولت هلند از پیمانکاران ساختمانی خواسته است که طرحی را برای سد امواج طوفان ارائه دهند که شامل هزینه های ضمیمه آن نیز باشد . شش طرح ارائه شد که Bouwkombinatie maeslant kering (BMK) طرح برنده را ارائه داد .
ضرر ها فواید
حساس به بحرانهای منفی ساده دریچه سد دارای چرخهای بادی لغزنده
نشست دریچه ها و قسمتها سیستم های قابل اعتماد موازی (14 دریچه)
نگهداری در زیر آب ساختاری ساده BMK
درهای باز نسبت به تصادفات تخریب پذیرند سد می تواند بسته شود حتی در جریانهای شدید طوفان دریچه چند قسمتی UIWAS
نشست حفره های دریچه سیستم ساختاری ساده با تکنیکهای هیدرولیکی پیشرفته دور از کرانه
حفره های دریچه با تلمبه خشک نمی شوند (برای نگهداری )
تداخل با بارگیری در طی تغییر (بنا کردن ) (کف سد با نوک مسیر نرده گذاری شده)
دریچه باید بین لایه های رسوبی را بشکافد و شیار بزند
دریچه ها پایه های زیر آب و پایه در زیر سد نگهداری می شوند . 24 دریچه مجزا (خطر شکست کم است )
کمترین فضا را اشغال می کند دریچه هیدرولیکی لغزنده (معلق ) Storcom
تکنیکهای پایه ریزی شده کاربردی ؟(همانند تونلها )
نگهداری غیر استادانه (سخت)
ته نشست دریچه ها
تداخل با بارگیری در طی تغییر (بنا کردن ) دریچه های زمانی که بازند بخوبی پشتیبانی (محافظت ) می شوند دریچه کشویی ، سری CHNW
فراتر از وسعت (در بالای سد ) دریچه ها براحتی قابل دسترسند (برای بازسازی (معاینه ) و نگهداری )
راه حل خیلی گران سیستم ساختاری ساده با زمینه ای تجربی (قابل تجربه )
فرآیند بستن به راحتی کنترل نمی شود نسبت به کل ولای گیری بی تفاوت دریچه قایقی CSNW
جا افتادن غیر مطمئن (فشار مستقیم بر روی کنترل فرایند – بستن ) بدون حرکت قسمتها در زیر آب (نگهداری اسان و قابل اعتماد )
با یک نقطه به تنهایی تماما بار گیری می شود درها زمانیکه باز هستند به خوبی حمایت می شوند طرح برنده : دریچه متحرک نیم دایره ای BMK
معاینه و نگهداری راحت حفره های آبگذر دریچه
طرح خوب موازنه شده
طرح برنده
سد BMK شامل دو دریچه حفره ای نیم دایره ای می باشد که توسط دو دسته استیل به هم متصل می شوند به یک نقطه محوری در هر دو کناره . یکی از فواید طرح BMK در رابطه با دیگر طرحها در راحتی نگهداری آن می باشد بطوریکه در ها در خشکی و با پایه های جانبی قرار گرفته اند .

عملکرد :
اگر سطح آب 00-3 متری در نوتردام فراتر از حد NAP پیشروی کند سد امواج طوفان در بندرگاه جدید باید بسته شود . در این وضعیت ها کامپیوتر سد امواج طوفان – سیتسم فرماندهی و حمایتی (BOS) سیستم کنترل (BES) را راه اندازی می کند تا سد را بندد . BES فرمانهای BOS را اجرا می کند .
در حوادث طوفانی جزر و مدی ، لنگرگاهها از آب پر می شوند بنابراین دریچه های حفره ای شروع به شناور شدن می کنند و می توانند به New water way تغییر وضعیت دهند . زمانیکه دریچه ها به هم می رسند ، حفره ها از آب پر هستند و دریچه ها به سوی قعر (کف لنگرگاه ) پایین می روند . بنابراین دهانه bo 3 متری بسته می شود . پس از اینکه بالا آمدن آب بر طرف می شود . دریچه ها تخلیه می شوند و ساختمان (سد) دوباره شروع به شناور شدن می کند از آنجایی که این مسلم است که بالا آمدن بعدی آب ، بالا آمدن غیر طبیعی دیگری نمی باشد دو دریچه به لنگرگاهها (حوضچه های ) خود بر می گردند .
زمانی که New water way پایین رفته زمان زیادی برای عبور کشتیها وجود ندارد . سد امواج طوفان تنها در شرایط خیلی بد بسته خواهد شد . احتمالا یک بار در هر دهسال . یک تست بستن برای بررسی تجهیزات صورت می گیرد . این زمانی صورت می گیرد که حمل و نقل کشتیها کم است با افزایش سطح آب دریا سد امواج طوفان نیاز است که بسته شود غالبا هر 50 سال .
ساختمان بنا :
کارهایی که در آب صورت می گیرد (ساختار کف )
ساختار کف در اعماق waterway new، 3 عملکرد دارد.
احداث یک پایه و شالوده مسطح برای دیواره های حایل که در کف سدها قرار گرفته اند با کمک فنر ها
برش جریان آب زمانیکه سد بسته است .
نگه داشتن در مکان پایه های فرعی جائیکه سدها قرار گرفته اند .

 


سدهای کف – قطعه های کف :
به طور کل 64 قطعه در کف در قعر جریان تند waterway new نصب شده است با متوسط فاصله 3.5 سانتیمتر از هم . قطعه ها توسط کرجی ای که پایه های پل را نگه می دارد تحویل داده شدند و با کمک یک دکل کش شناور نصب شدند . ابزارهای اندازه گیری متنوعی برای اینکه قطعه ها را در فاصله های یک سانتیمتری نصب کنند استفاده شدند . یک برج 21 متری به هر سد وصل شد ، که به صورت بسته در بالای آب باقی می ماند بعد از اینکه سد به داخل موقعیت (وضعیت ) کشیده می شود .
از آنجاییکه کفها تا اندازه ای منحنی وار هستند ، سدها نسبتا سه گوشه هستند . در قسمت متقاطع نیز سدها نامنظم هستند . بنابراین از ساییدگی نوک سدها بر علیه یکدیگر جلوگیری می کند . به منظور ایجاد یک شکستگی بزرگتر از حد مجاز در قعر دو پنجه سایشی دریک طرف هر سد تعبیه شده است . یا تطبیق دنده ها در طرف دیگر .

این ممکن نبود برای کف سدها تا به سادگی در بستر روخانه مستقر شوند . از طرف دیگر سرعت تندی جریان باعث ایجاد مزاحمت در زیر آب و در نزدیکی سدها بر روی بسته شده ، می شود به علاوه کف سد نباید خیلی محکم ثابت شود اگر آب قادر به عبور از زیر کف سدها نباشد . برای این منظور سدها (هر قطعه از سد ) بر روی بستر صافی خلل و فرج دار باقی می ماند در برگشت بر روی محافظهای قعر محکم قرار بگیرند .
بستر صافی :
طول : 60 متر
وزن : MN206(206.000 تن) مواد گوناگون به صورت 4 لایه طرح ریزی شده است .
لایه 1 : ماسه و شن 0.5-5mm ضخامت 0.5m لایه انتهایی
لایه 2 : سنگریزه 3.5-35mm ضخامت 0.5m لایه انتهایی
لایه 3 : قلوه سنگ (بازالت) 30-140mm ضخامت 0.5m لایه انتهایی
لایه 4 :قلوه سنگ (بازالت) 10-60kg ضخامت 0.75 m لایه بالایی

به منظور نصب بستر –صافی و محافظ – قعر New waterway لاروبی شده است از عمق 14.5 متری زیر Amsterdam Ordnance Datum(NAP) تا ماکسیمم عمق 22.5 متری زیر NAP به طور کل 920000 متر مکعب شن ولای لاروبی شده است . با نصب بستر صافی و کف قطعه سوها قعر رودخانه تا سطح 17 متری زیر NAP بالا آمد .
چهار نوع کشتی لایه روب استفاده شد .
دو کرجی لای کش برای لای روبی لایه های خیلی سخت در waterway new یک قلاب یا back ho برای لای روبی شیبها استفاده شد .
خاک انداز لای روب مکشی برای هموار کردن لایه ها و نصب دو لایه صافی در قعر استفاده شد .
یک نوک سنگی مایل برای تخلیه محافظ قعر و دو لایه صافی دیگر
یک صفحه خوب بین بستر صافی و کف هر قطعه از سد نیاز بود . و این با هموار کردن لایه بالایی بستر صافی به دست می آمد . برای این هدف یک وسیله استیلی با دندانه های عمودی در دهانه یک خاک انداز مکشی به کار گذاشته شد تا یک نوع شن کش تولید کند نتایج خوب زیر بدست آمد با روشی مشابه Neeltie و در petroleum Harbour در منطقه Europort این روش همچنین در waterway new به کار برده شد .
تخلیه بستر صافی :
پس از جستجوی وسیع عملی شدن تخلیه مواد صافی گوناگون در بستر رودخانه بررسی شد . این
روش دو خطر داشت .
خطر جدایی مواد صافی (بطوریکه اجزاء بزرگتر از کوچکتر جدا می شدند .) بنابراین به طور پنهانی ثبات بستر صافی را کاهش می دهد .
خطر مخلوط شدن با شن زمانی که مواد صافی تخلیه شد ، تهنشین شدن لجن و لای بین لایه های مختلف همچنین ثبات بستر ، صافی را کاهش می دهد . در فرایند تخلیه تکنیکهای اندازه گیری ویژه ای استفاده شد و آن امکان تخلیه لایه های گوناگون بر روی همدیگر تا 10 سانتی متری ضخامت موارد نیاز را بهبود داد .
کشتیها
کشتیهای گوناگونی در نصب بستر صافی استفاده شد . یک کشتی لاروب به منظور مکش شن و تخلیه شنهای درشت و سنگریزه ها آماده خدمت شد . کشتی دیگر (jested) جریانات آب و هوا را به جریان می انداخت تا از ته نشست هر گونه لجن بین لایه های گوناگون جلوگیری کند . jested یک کشتی خود محرک است که ته نشست رسوبات در بین لایه های صافی از بین می برد . این از طریق جریان هوا به طور عمومی و تزریق آب به دست می آید بنابراین رسوبات مزاحم را پخش و پلا می کند که سپس توسط جریانات جزر و مدی دور می شوند .
سیستم کنترل و تصمیم گیری :
تصمیمی که آیا سد امواج طوفان بسته شود یا نه توسط برنامه کامپیوتری که به عنوان (Bos) Deosion and support system شناخته شده است ، گرفته می شود . در یک حادثه بستن Bos دستورات را به سیستم کنترل سد امواج طوفان waterway new صادر می کند و سپس آنها را انجام می دهد .
BOS شامل شش جزء می شود .

1- اصل سند (حروف چاپی ) (شامل قوانین گرفته شده اجرایی) :روش کار برای سد امواج طوفان waterway new Hartel Barrier , Hartel Sluices این نرم افزار شامل تمام روشهای کار برای باز و بسته کردن سدها و دریچه ها و برای حرکت سد در طی بسته شدن می باشد . اصل سند زمانی را که یک عمل باید صورت بگیرد را مشخص می کند .
2- مفسر اصل سند . این قوانین گرفته شده را از روی نوشته جات می خواند و عملکرد لازم در کامپیوتر را فعال می کند .
3- metacomputer این در حقیقت مجموعه از عملکردهای ثابت ممکن سد میباشد .نوشته جات زمان عملکرد را مشخص می کنند .
4- sobek یک مدل حرکت آب گسترش یافته توسط تحقیقات انستیتو waste water (Riza) purification با همکاری آزمایشگاه آبی در De voorst (شمال شرقی زمینی که از دریا باز گرفته شده (polder ) بر پایه مقادیر زیادی از اطلاعات sobek سطح بالا آمده آب را در رتردام اسپیچ کنیس و دردرچ محاسبه کرد . جدا از اطلاعات جریان sobek همچنین با اطلاعات تاریخی کار می کند . (مربوط به 12 روز پیش)
5- مجموعه اطلاعات شبکه که از اطلاعات تمام شبکه های انداز ه گیری مربوط در بیرون از سیستم جمع آوری شده است : شبکه های اندازه گیری water manegment Department of public work اطلاعات Hydro , Meteo از مرکز Rinmond و سرویس هشدار امواج طوفان . در موقعیت های هشدار مجموعه اطلاعات شبکه نیز اطلاعات را می فرستند .
6- ارتباط مستقیم با سیستم کنترل سد (BES)
تاثیر بر هم تعامل :
Bos به طور مداوم موقعیت پیش بینی شده بر علیه فرایند بستن را ارزیابی می کند برای این منظور آن 24 ساعت اطلاعات کسب میکند . هر 10 دقیقه همه اطلاعات محیط را بررسی می کند این اساسا بر روی سطح بالا آمده آب ، مسیر باد ، سرعت باد و تخلیه ها متمرکز می شود . این پیش بینها به هم می پیوندند و تبدیل به سطح بالا آمده آب در روتردام ، در درچ و اسپیج کنیس می شود . تصمیم بسته شدن بسته به عهده اصول گرفته شده 24 ساعت قبل از بستن کامل می باشد . Bos قادر به مرور تصمیمات گرفته شده تا 3 ساعت قبل از عمل می باشد . Bos فرمانهای لازم را به صورت مرحله ای به BES منتقل می کند .
جدا از فرمانهای اجرایی BES نیز به طور موضعی در محل خود با خبر است . از بین دیگر اجزاء آن پیچ جکهای لولای توپی ، سطح آب در لنگرگاه (حوضچه ) باز و بسته شدن دریچه حوضچه حرکت به بیرون و درون دیوار حایل توسط خودرو (گونه خودرو ) و پایین آوردن و دوباره شناورکردن دیوار حایل توسط عملکرد دریچه ها و پمپها را کنترل می کند . به علاوه BES تعدادی از سیستمهای الکتریکی مستقل را کنترل می کند از قبیل : امنیت ساختمانهای کنترل (کنترل الحاقی ) عملکرد هوا در دیوارهای حایل ، لولای توپی و گردونه خودرو (شامل گرمایش ، تهیوه و تعدیل هوا ) خلاصه این که : Bos محیط را در می یابد و BES سد را .
فرمان بستن
فرمان عمل به طوریکه سد نیاز است که بسته شود یک تصمیم دقیق از حرکت باز داشتن است . از یک طرفه کم کردن خسارات در خارج از منطقه سدها تا جایی که ممکن است . از طرف حمل و نقل در روتردام باید باز بماند تا زمانی که کشتیرانی ممکن است . در اواخر 1996 بازگشایی همه قسمتهای مربوط ممکن شد و با یک گزارش مشاوره ای به وزیر حمل و نقل به public works و water management پیوست . تصمیم گرفته شد که سد maesland باید بسته شود اگر سطح 3 متری آب رودخانه ordnance آمستردام هلند بالا بیاید یا اگر سطح 2.90 متری آب رودخانه Ordnance آمستردام هلند در Dordrecht بالا بیاید ، کامپیوتر تصمیم می گیرد که آیا سد maeshlandباید بسته شود یا نه ، همانطور که برای بسته شدن سدهای امواج طوفانی در Hartel canal – Hartel Barrier –30 کیلومتری جنوب شرقی تصمیم می گیرد .
ثبات و امنیت
Bos ثبات و امنیت را تضمین می کند .
بستن سد زمانی که لازم است برای امنیت زمین مذکور
بستن به موقع سد زمانی که لازم است بسته شود .
محافظت از خود سد ، نگهدرای سد (حفاظتی )
اگر سد موفق به بسته شدن نشود یا در زمان لازم بسته نشود ، این می تواند نتایج وخیمی برای جزیره مذکور داشته باشد . بنابراین ثبات قابل قبول ، مهمترین خواسته هر سیستم می باشد . به منظور تضمین چنین ثباتی سخت افزار Bos شامل دو شاخه زیادی می باشد . اگر اشتباهی در یکی از شاخه ها رخ دهد کامپیوتر به شاخه دوم سخت افزار که همانند اولی می باشد ، تغییر می کند . چنانچه در شاخه دومی اشتباهی رخ دهد ، سپس کامپیوتر با ایجاد صدایی مربوط به شاخه اول به کار خود ادامه می دهد . این یک فرایند پیوسته است . در هر نقطه از مسیر کار Boc می تواند چنانچه لازم باشد تصمیم بگیرد که بین دو شاخه تغییر کند . این باعث ثبات و قابل اعتمادی زیاد Bos می شود .

برای بستن سدها به هیچ نیروی انسانی نیاز نیست . گرچه که چنانچه Bos در حال بررسی بستن باشد ، آن پس به رهبران عمل اخطار می دهد و تیم را از کار می اندازد حداقل هشت ساعت قبل از اعلام خطر .

عملکرد تجهیزات و محل حوضچه
تجهیزات شامل 3 جزء می شوند عملکرد تجهیزات دریچه حوضچه (لنگرگاه) فرمان خود رو سیستم شن ریزی (ثابت نگه داشتن ) دیوار حایل در طی بستن سد ، تجهیزات عملکرد دیوارهای حایل را از مکان حوضچه به نزدیکی New waterway می راند 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله   34 صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلودمقاله سد امواج طوفان New waterway

دانلود مقاله امواج اولتراسوند

اختصاصی از فی بوو دانلود مقاله امواج اولتراسوند دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله امواج اولتراسوند


دانلود مقاله امواج اولتراسوند

در سال 1901 ماکس پلانک (Max Planck: 1947-1858) اولین گام را به سوی مولکول نور برداشت و با استفاده از ایده‌ی تقسیم نور، جواب جانانه‌ای به این سؤال داد. او فرض کرد که انرژی تابشی در هر بسامدِ ν ــ بخوانید نُو ــ به صورت مضرب صحیحی از νh است که در آن h یک ثابت طبیعی ــ معروف به «ثابت پلانک» ــ است. یعنی فرض کرد که انرژی تابشی در بسامد ν از «بسته های کوچکی با انرژی νh» تشکیل شده است. یعنی اینکه انرژی نورانی، «گسسته» و «بسته ـ بسته» است. البته گسسته بودن انرژی به‌تنهایی در فیزیک کلاسیک حرفِ ناجوری نبود‌ (همان‌طور که قبل‌تر در مورد امواج صوتی دیدیم)، بلکه آنچه گیج‌کننده بود و آشفتگی را بیشتر می‌کرد، ماهیتِ «موجی ـ ذره‌ای» نور بود. این تصور که چیزی ــ مثلاً همین نور ــ هم بتواند رفتاری مثل رفتار «موج» داشته باشد و هم رفتاری مثل «ذره»، به طرز تفکر جدیدی در علم محتاج بود.

تعریف امواج اولتراسوند فراصوت
روشهای تولید امواج فراصوت
روش پیزو الکتریسیته
روش مگنتو استریکسیون
کاربرد امواج فراصوت
میکروماساژ مکانیکی
خطرات اولتراسوند
سوختگی
پارگی کروموزومی
ایجاد حفره یا کاویتاسیون

 

شامل 18 صفحه فایل word


دانلود با لینک مستقیم


دانلود مقاله امواج اولتراسوند

پایان نامه کاربرد ماهوراه ( انتشار امواج ) و ارتباط با سکو های دریایی

اختصاصی از فی بوو پایان نامه کاربرد ماهوراه ( انتشار امواج ) و ارتباط با سکو های دریایی دانلود با لینک مستقیم و پر سرعت .

محتوای این بخش : پایان نامه کاربرد ماهوراه ( انتشار امواج ) و ارتباط با سکو های دریایی 102 صفحه

 دانلود متن کامل پایان نامه با فرمت ورد

 

عنـوان پایان نامه :

کاربرد ماهوراه ( انتشار امواج ) و ارتباط با سکو های دریایی

 

 

استاد راهنما :

جناب آقای مهندس صاحب علم

 

 

دانشجو :

نادر مدکی

 

انتشار امواج ماوراء افق

کلیات

مقدمه

این فصل اختصاص به انتشار امواج ماوراء افق با استفاده ا لایه تروپوسفر در ارتفاعات چندین کیلومتری سطح زمین دارد. بطوریکه در فصول قبل بیان شد افق رادیویی یک فرستنده که آنتن آن در ارتفاع ht از سطح زمین قرار دارد با فرض آنکه از کلیه ارتفاعات مسیر صرفنظر و فقط انحنای سطح زمین مدنظر باشد از رابطه زیر تبعیت می نماید.

که بعنوان مثال برای شرایط هوای استاندارد 33/1=K و ارتفاع 30 متری آنتن این فاصله به حدود 6/22 کیلومتر بالغ می گردد. برای آنکه بتوان امواج را مستقیماً و بدون نیاز به ایستگاههای واسط به فواصلی دورتر از افق رادیویی ارسال داشت از تکنیکهای خاص می بایست بهره گرفت که یکی از مهمترین آنها با کارآئی مناسب بهره گیری از ارتباطات تروپواسکاتر می باشد که در این فصل به توضیحاتی در خصوص آن پرداخته می شود.

روش های ارتباطات ماوراء افق

روش های ارسال و دریافت امواج رادیویی با استفاده از هاپ های بلند و از طریق ارتباطات رادیویی ماورای افق عبارتند از:

ارتباطات HF و MF

در این روش از شکست و بازتاب برای ارسال امواج تا فواصل هزاران کیلومتر استفاده می شود. پهنای باند متوسط مجاز ارسال در حد یک یا دو کانال تلفنی است. محدودیت اساسی دیگری که برای استفاده از زیر باندهای این طیف وجود دارد وابستگی اینگونه ارتباطات به ساعت شبانه روز و شلوغی آن می باشد. این روش بویژه قبل از مطرح شدن ارتباطات ماهواره ای بطور وسیعی استفاده می گردید.

اسکاتر یونسفری

این روش از اسکاترینگ امواج رادیویی در لایه یونسفر (یک پدیده مشابه تروپواسکاتر) بهره می برد و در فرکانس های VHF تا MHz 100 می تواند هاپ هائی تا چندین هزار کیلومتر را تشکیل دهد.

پهنای باند متوسط در این روش خیلی محدود است، به طوریکه فقط امکان ارسال چند کانال تلفنی وجود دارد. همچنین محدودیت های ناشی از محوشدگی سبب شده است که از این روش بندرت استفاده شود.

ترکش های شهابی

در این روش از انعکاسات حاصل از دنباله های یونیزه شده شهابها که همیشه در لایه های بالای اتمسفر وجود دارند بهره گیری می شود. به خاطر فیزیک پدیده، پیوستگی ارسال تأمین نگردیده و امواج باید در قالب ترکشها ارسال شوند. این پدیده در حال مطالعه است و در حال حاضر مورد استفاده قرار نمی گیرد.

تروپواسکاتر

این روش که موضوع این مطالب را تشکیل می دهد، ارسال تا بیش از صد کانال تلفنی را با هاپ هائی تا صدها کیلومتر امکان پذیر می نماید. این فن آوری در برخی مواقع راه حل مناسبی برای شبکه های محلی با هاپ های طولانی قلمداد می گردد.

دیفرکشن (پراش)

این تکنیک، ارسال تعداد زیادی کانال تلفنی را تا فواصل کوتاهی فراتر از افق ممکن می سازد. این پدیده در ارتباطات سیار و در باندهای UHF/VHF مورد استفاده

می باشد .

ماهواره ها

مناسب ترین روش برای هاپ های خیلی طولانی (مثلاً ارتباطات بین قاره ای) است، اما جایگزینی شبکه های ماورای افق با آن بعضاً به خاطر هزینه و عدم ظرفیت کافی مقرون به صرفه نیست.

متن کامل را می توانید دانلود کنید چون فقط تکه هایی از متن این پایان نامه در این صفحه درج شده است(به طور نمونه)

ولی در فایل دانلودی متن کامل پایان نامه

همراه با تمام ضمائم با فرمت ورد که قابل ویرایش و کپی کردن می باشند

موجود است


دانلود با لینک مستقیم


پایان نامه کاربرد ماهوراه ( انتشار امواج ) و ارتباط با سکو های دریایی